CHAPTER 5

What Is Software?

A cultural definition

The previous chapters have spoken of “computations,” meaning cal-
culation and algorithms performed either in the medium of language
itself or with the help of mechanical or electronic devices. For many
speculative computations, like those in the Sefer Yetzirah with its ob-
scure mechanical device, it’s difficult, if not impossible, to draw a
clear line between symbolic-imaginary and material processing, soft-
ware and hardware.

What is software? Simply defined as algorithms, software would
fail, first of all, to encompass the vast speculative imagination from
magic to codework in which computational code rarely is pure algo-
rithms, but a metaphorical hybrid. A strictly formal definition of soft-
ware would also fail to describe the line of the Steven Seagal movie,
“300,000 pages of code. Or 60 minutes of triple-X rubber-and-leather
interactive bondage porno.” That line shows that such a cultural un-
derstanding isn’t far-fetched, but is already street wisdom. Why, af-
ter all, did the mathematician John W. Tukey invent the term “soft-
ware” in 1957 given that the term algorithm, phonetically derived
from the 9th century Persian mathematician Muhammad ibn Musa al-
Khwarizmi, existed centuries before? Obviously, software referred to
algorithms as control logic that was abstracted from the machine. The
Unix operating system which runs on almost any kind of hardware]
is a prime example of software as an abstraction from hardware. But
just as the cultural history of computation is rich with metaphoriza-
tions and meanings inscribed into formal processes, the same is true
for software. In 1970, only 13 years after Tukey’s coinage, Jack Burn-
ham’s Software exhibition appropriated the term metaphorically. In a
1968 essay Systems Esthetics, Burnham observed that a written piece

The free Unix clone NetBSD supports runs almost any existing hardware plat-
form including IBM-compatible PCs, palmtops, video game consoles, old Amiga and
Atari home computers and proprietary Unix servers.

121



122 5. WHAT IS SOFTWARE?

of conceptual artist Donald Judd “resembles what a computer pro-
grammer would call an entity’s /list structure/.”] Reading these sem-
blances, Burnham did not only adopt software as a metaphor for con-
ceptual art, but also turned, and aestheticized, computer software
into concept art.

Software as practice

Just as, for example, literature is not only what is written, but all
cultural practices it involves—such as oral narration and tradition,
poetic performance, cultural politics—software is both material and
practice. As the verb “to google” for using the Google search engine
shows, or in their computational sense, “to browse,” “to chat” and
“to download,” human practices are born out of the use of software.
Googling is nothing but the shorthand for using the web-based client-
server software written by Google corporation’s programmers. In this
sense, software is no longer just machine algorithms, but something
that includes the interaction, or, cultural appropriation through users.
This appropriation is more than just a cybernetic human-machine
interaction and what computer science and media theory often re-
duce to pointing, clicking and other Pavlovian responses within the
restraints of a programmed system.—The same reductive understand-
ing of interaction has turned “interactive art” in its common phenomo-
nen of behavioral video installations into an artistic dead-end.—True
interaction with technical systems involves creative use and abuse
outside the box, metaphorization, writing and rewriting, configuring,
disconfiguring, erasing. All these practices also make up software.

It wasn’t just artistic appropriations that inscribed metaphors into
software. High-level, machine-independent programming languages
and operating systems such as C and Unix gave birth, around the
same time, to a culture that gradually detached software from the con-
cept of code running on a machine. Through program code listings in
books and computer magazines, source code snippets and patches ex-
changed in electronic networks or even oral conversations, software
took up a life of its own. The results were political-philosophical
movements like Free Software, programming puns such as recur-
sive acronyms, hacker slang that mixed English and computer lan-
guage constructs and poetry in computer languages such as Larry

2jack Burnham. Systems Esthetics. Artforum, 9 1968. http:
//www.arts.ucsb.edu/faculty/jevbratt/classes_previous/fall_03/arts_
22/Burnham_Systems_Esthetics.html. [16]


http://www.arts.ucsb.edu/faculty/jevbratt/classes_previous/fall_03/arts_22/Burnham_Systems_Esthetics.html
http://www.arts.ucsb.edu/faculty/jevbratt/classes_previous/fall_03/arts_22/Burnham_Systems_Esthetics.html
http://www.arts.ucsb.edu/faculty/jevbratt/classes_previous/fall_03/arts_22/Burnham_Systems_Esthetics.html

SOFTWARE VERSUS HARDWARE 123

Wall’s first Perl poem from 1990. Free software—in the GNU under-
standing of an embedded value that is not only engineering freedom,
but ontological freedom—is perhaps the strongest example of a cul-
tural and philosophical notion of software. An artistic understanding
of software also abounds in computer science from Donald Knuth’s
Art of Computer Programming to Paul Graham’s recent Hackers and
Painters[] although it might be based on a narrow understanding of
art as high craftsmanship. To no longer define software as just algo-
rithms running on hardware helps to avoid common misunderstand-
ings of software art as some kind of of genius programmer art. If
software is a broad cultural practice, then software art can be made
by almost any artist.

Software versus hardware

Aside from the blurriness of software as a machine process and soft-
ware as a human cultural practice, the technical distinction between
software and hardware is blurry itself. Is instruction code hard-
ware once it is burned into an EPROM, is it software when it is
stored in an erasable flash ROM? What about microcode, computer
programs stored right within chips in any modern CPU? Or chips
like the Transmeta Crusoe which has only minimal hardware wiring
and implements its CPU instruction set—like Intel-compatible x86—
solely through an embedded emulation software (written originally
by Linux creator Linus Torvalds)? What about the BIOS or firmware
of computer mainboards, graphics cards, network adaptors without
which this hardware simply isn’t operational? Isn’t it a totally ar-
bitrary distinction whether a circuit is hardwired into the layout of
chip transistors, or whether the same logic is stored within a memory
chip? The definition of hardware, in turn, is not less doubtful. The
first modern computing hardware, the Turing machine, did not ma-
terially exist, but was theoretical and imaginary. The same applies
to Donald Knuth’s Mix computer. The cultural history of computa-
tion proves that hardware can be metaphorical when algorithms run
on any imagined material including the entire cosmos in Quirinus
Kuhlmann’s speculation. Still, in the end the distinction between soft-
ware and hardware relies on Cartesian categories: Is, for example, a
human brain that performs a computation a piece of hardware?

3Donald E. Knuth. The Art of Computer Programming. Addison-Wesley, Reading,
Massachusetts, 1973-1998. [55]], Paul Graham. Hackers and Painters. O’Reilly,
Sebastopol, 2004. [40]



124 5. WHAT IS SOFTWARE?

If the duality of software and hardware needs to be suspended,
it follows that the notion of software as immaterial versus hardware
as material must be suspended, too. The difference between materi-
ality and immateriality exists within software itself: an algorithm is
material in its stored, coded form and most of its cultural practices.
The immaterial component might be the imagination and phantasms
invested into the software, that inserting a CD-ROM, to refer to the
previous example, might blow up the earth or get you a sexual turn-
on (or turn-off perhaps). Some software chiefly or purely exists in
imaginary form:

e vaporware, the constantly promised “stable upgrade” of
a crashing computer program for example, or the ever-
procrastinated new version of a piece of software, like the
computer game Duke Nukem Forever;

e hoax viruses, i.e. E-Mail “memes” which instruct gullible
readers to erase critical system files on their computer;

e imaginary virus infection; hardware failures or human mis-
takes wrongly interpreted as computer virus infections.

If the location or even existence of some software isn’t quite clear, if
a piece software isn’t code running on machine because it appears as
pseudo code in a book or is, like most Perl poetry for example, not
even a working algorithm, then a technical definition of software is
too limited. In the end, “software” and “computation” can’t be strictly
differentiated from each other. The cultural history of software is the
cultural history of computation.

Conclusion

Software, it follows, is a cultural practice made up of (a) algorithms,
(b) possibly, but not necessarily in conjunction with imaginary or ac-
tual machines, (c) human interaction in a broad sense of any cultural
appropriation and use, and (d) speculative imagination. Software
history can thus be told as intellectual history, as opposed to media
theories which consider cultural imagination a secondary product of
material technology. This booklet took language computations as its
primary examples mostly because language can be computational in
itself. Thanks to its abstraction and grammatical structure, it also ex-
presses computation better than any other symbolic form. Program-
ming languages, with their modified English, are the proof. But or
architecture, too, could serve as the main examples in a cultural his-
tory of computation since they both combine formal instruction with
imagination.



CONCLUSION 125

The cultural history of computation shows that it is as rich and
contradictory as that of any other symbolic form. It encompasses
opposites, algorithms as a tool versus algorithms as a material of
aesthetic play and speculation, computation as inner workings of na-
ture (as in Pythagorean thought) or God (as in Kabbalah and magic)
versus computation as culture and a medium of cultural reflection
(starting with Oulipo and hacker cultures in the 1960s), computa-
tion as a means of abolishing semantics (Bense) versus computation
as a means to structure and generate semantics (as in Lullism and
Artificial Intelligence), computation as a means of generating totality
(Quirinus Kuhlmann) versus computation as a means of taking things
apart (Tzara, cut-ups), software as ontological freedom (GNU) versus
software as ontological enslavement (Netochka Nezvanova), ecstatic
computation (Kuhlmann, Kabbala, Burroughs) versus rationalist com-
putation (from Leibniz to Turing) versus pataphysical computation as
the parody of both rationalist and irrationalist computation (Oulipo
and generative psychogeography), algorithm as expansion (Lullism,
generative art) versus algorithm as constraint (Oulipo, net.art), code
as chaotic imagination (Jodi, codeworks) versus code as structured
description of chaos (Tzara, John Cage).

Computation and its imaginary are rich with contradictions, and
loaded with metaphysical and ontological speculation. Underneath
those contradictions and speculations lies an obsession with code
that executes, the phantasm that words become flesh. It remains
a phantasm, because again and again, the execution fails to match
the boundless speculative expectations invested into it. Cultural and
political semantics result merely from its dull formalisms and their
interference with daily life, from account balance statements to “end-
user software.” Formalisms create semantics in a wholly different way
than people expect from an allegedly “intelligent machine.” Comput-
ers therefore exist, as hacker wisdom says, to solve problems which
we would not even be aware of having if not for the computers them-
selves.



	Chapter 1. Introduction: In Dark Territory
	Chapter 2. Computations of Totality
	Exe.cut[up]able statements
	Magic and religion
	Pythagorean harmony as a cosmological code
	Kabbalah
	Ramon Llull and Lullism
	Rhetoric and poetics
	Combinatory poetry and the occult
	Computation as a figure of thought

	Chapter 3. Computation as Fragmentation
	Gulliver's Travels
	The Library of Babel
	Romanticist combinatorics
	Concrete poetry
	Max Bense and ``information aesthetics''
	Situationism, Surrealism and psychogeography
	Markov chains
	Tristan Tzara and cut-ups
	John Cage's indeterminism
	Italo Calvino and machine-generated literature
	Software as industrialization of art
	Authorship and subjectivity
	Pataphysics and Oulipo
	Abraham M. Moles' computational aesthetics
	Source code poetry
	Jodi
	1337 speech
	Codework

	Chapter 4. Automatisms and Their Constraints
	Artificial Intelligence
	Athanasius Kircher's box
	John Searle's Chinese Room
	Georges Perec's Maschine
	Enzensberger's and Schmatz's / Czernin's poetic machines
	Software dystopia: Jodi
	Software dystopia: Netochka Nezvanova
	From dystopia to new subjectivity

	Chapter 5. What Is Software?
	A cultural definition
	Software as practice
	Software versus hardware
	Conclusion

	References
	List of Figures
	Index

