
T H E R E I s N o
S O F T W A R E

K h m he present explosion of the signifylng scene, which, as we
Barry McGuire and A F. N. Dahran, coincides

with the so-called Western world, is instead an implosion. The bulk
of written texts-including the paper I am actually reading to you-
no longer exist in perceivable time and space, but in a computer
memory’s transistor cells. And since these cells, in the last three
decades of Silicon Valley exploits, have shrunk to spatial extensions
of less than one micrometer, our writing scene may well be defined
by a self-similarity of letters over some six orders of decimal magni-
tude. This state of affairs does not only make a difference to history,
in which, at its alphabetical beginning, a camel and its hebraic letter
game1 were just two and a half orders of decimal magnitude apart. It
also seems to hide the very act of writing.

As one knows without saying, we do not write anymore. The
crazy kind of software engineering that was writing suffered from an
incurable confirneon befiuent we and mention. Up to Holderlin’s time, a
mere mention of lightning seems to have been sufficient evidence of
its possible poetic use. Nowadays, after this lightning’s metamor-
phosis into electricity, manmade writing passes instead through
microscopically written inscriptions, which, in contrast to all histor-
ical writing tools, are able to read and write by themselves. The last
historical act of writing may well have been the moment when, in the
early seventies, the Intel engineers laid out some dozen square
meters of blueprint paper (64 square meters in the case of the later
8086) in order to desi_gn the hardware architecture of their first inte-
grated microprocessor. This manual layout of two thousand transis-
tors and their interconnections was then miniaturized to the size of
an actual chip and, by electro-optical machines, written into silicon

147

F r i r d r i r b K i t t l r r

layers. Finally, this 4004-microprocessor found its place in the new
desk calculators of Intel’s Japanese customer,’ and our postmodern
writing scene could begin. Actually, the hardware complexity of
microprocessors simply discards such manual design techniques. In
order to lay out the next computer generation, the engineers, instead
of filling countless meters of blueprint paper, have recourse to
Computer Aided Design, that is, to the geometrical or autorouting
powers of the actual generation.

In constructing the first integrated microprocessor, however,
Intel’s Marcian E. Hoff had given an almost perfect demonstration of
a Turing machine. After 1937, computing, whether done by men or
by machines, can be formalized as a countable set of instructions
operating on an infinitely long paper band and the discrete signs
thereon. Turing’s concept of such a paper machine: whose opera-
tions consist only of writing and reading, proceeding and receding,
has proven to be the mathematical equivalent of any computable
function. Universal Turing machines, when fed the insauctions of
any other machine, can imitate i t effectively. Thus, precisely because
eventual differences between hardware implementations do not
count anymore, the so-called Church-Turing hypothesis in its
strongest or physical form is tantamount to declaring nature itself a
universal Turing machine.

This claim in itself has had the effect of duplicating the implo-
sion of hardware by an explosion of software. Programming lan-
guages have eroded the monopoly of ordinary language and grown
into a new hierarchy of their own. This postmodern Tower of
Babel reaches from simple operation codes whose linguistic exten-
sion is still a hardware configuration, passing through an assembler
whose extension is this very opcode, up to high-level programming
languages whose extension is that very assembler. In consequence,
far-reaching chains of self-similarities in the sense defined by frac-
tal theory organize the software as well as the hardware of every
writing. What remains a problem is only recognizing these layers
which, like modem media technologies in general, have been explic-
itly connived to evade perception. tlre simply do not know what our
writing does.

To wordprocess a text, that is, to become oneself a paper
machine working on an IBLM AT under Microsoft DOS, one must

148

T b r r r I s N o S o f t w o t c

first of all buy some commercial files. Unless these files show the
file extension names of EXE or of COM, wordprocessing under
DOS could never start. The reason is that only COM- and EXE-
files entertain a peculiar relation to their proper names. On the one
hand, they bear grandiloquent names like Wordperfect, on the
other hand, more or less cryptic, because nonvocalized, acronyms
like WP. The full name, alas, serves only the advertising strategies
of software manufacturers, since DOS as a microprocessor operat-
ing system cannot read file names longer than eight letters. That is
why the unpronounceable acronym W, this posthistoric revoca-
tion of a fundamental Greek innovation, is not only necessary, but
amply sufficient for postmodern wordprocessing. In fact, it seems to
bring back truly magical power. WP does what i t says. Executable
computer files encompass, by cona-ast not only to Wordperfect but
also to big but empty Old European words such as the Mind or the
Word, all the routines and data necessary to their self-constitution.
Surely, tapping the letter sequence WP and Enter on an AT key-
board does not make the Word perfect, but this simple writing act
starts the actual execution of Wordperfect. Such are the triumphs
of software.

The accompanying papenvare cannot but multiply these magic
powers. Written to bridge the gap between formal and everyday lan-
guages, electronics and literature, the usual software manuals intro-
duce the program in question as a linguistic agent ruling with near
omnipotence over the computer system’s resources, address spaces,
and other hardware parameters: WP, when called with command
line argument X, would change the monitor Screen from color A to
B, start in mode C, return finally to D, etc. ad infinitum.

In fact, however, these actions of agent WP are virtual ones,
since each of them (as the saying goes) has to run under DOS. It is
the operating system and, more precisely, its command shell that
scans the keyboard for eight-bit file names on the input line, trans-
forms some relative addresses of an eventually retrieved file into
absolute ones, loads this new version from external mass memory to
the necessary random access space, and finally or temporarily passes
execution to the opcode lines of a slave named Wordperfect.

The same argument would hold for DOS, which, in the final
analysis, resolves into an extension of the basic input and output sys-

149

F r i r d r i c b K i t t l r r

tem called BIOS. Not only no program, but also no underlying
microprocessor system could ever start without the rather incredible
autobooting faculty of some elementary functions that, for safety’s
sake, are burnt into silicon and thus form part of the hardware. Any
transformation of matter from entropy to information, from a million
sleeping transistors into differences between electronic potentials,
necessarily presupposes a material event called reset.

In principle, this kind of descent from software to hardware,
from higher to lower levels of observation, could be continued over
more and more orders of magnitude. All code operations, despite
such metaphoric faculties as call or return, come down to absolutely
local smng manipulations, that is, I am afraid, to sign$m ofvoltage
dflmmcs. Formalization in Hilbert’s sense does away with theory
itself, insofar as “the theory is no longer a system of meaningful
propositions, but one of sentences as sequences of words, which are
in turn sequences of letters. We can tell [say] by reference to the
form alone which combinations of the words are sentences, which
sentences are &oms, and which sentences follow as immediate con-
sequences of

When meanings come down to sentences, sentences to words,
and words to letters, there is no software at all. Rather, there would
be no software if computer systems were not surrounded by an envi-
ronment of everyday languages. This environment, however, ever
since a famous and twofold Greek invention, has consisted of letters
and coins, of books and bucks! For these good economical reasons,
nobody seems to have inherited the humility of Alan Turing, who, in
the stone age of computing, preferred to read his machine’s outprint
in hexadecimal numbers rather than in decimal numbems On the
contrary, the so-called philosophy of the so-called computer com-
munity tends systematically to obscure hardware with software, elec-
tronic signifiers with interfaces between formal and everyday
languages. In all philanthropic sincerity, high-level programming
manuals caution against the psychopathological risks of writing
assembler code.6 In all friendliness, ”BIOS services” are currently
defined as designed to “hide the details of controlling the underlying
hardware from your program.”‘ Consequently, in a perfect gradual-
ism, DOS senices would hide the BIOS, WordPerfea the operating
system, and so on and so on until, very recently, two fundamental

150

Pierre
Highlight

T b c r c I s N o S o f t w a r e

changes in computer design (or DoD politics) have brought this sys-
tem of secrecy to closure. First, on an intentionally superficial level,
perfect graphic user interfaces, since they dispense with writing itself,
hide a whole machine from its users. Second, on the microscopic
level of hardware, so-called protection software has been imple-
mented in order to prevent uuntrusted programs” or “untrusted
users” from any access to the operating system’s kernel and
inpudoutput channels.’

This ongoing triumph of software is a strange reversal of
Turing’s proof that there can be no mathematically computable
problem a simple machine could not solve. Instead, the physical
Church-Turing hypothesis, by identifymg physical hardware with
the algorithms forged for its computation, has finally gotten rid of
hardware itself. A s a result, software has successfully occupied the
empty place and profited from its obscurity. The ever-growing hier-
archy of high-level programming languages works exactly the same
way as one-way functions in recent mathematical cryptography. Such
functions, when used in their straightforward form, can be computed
in reasonable time, for instance, in a time growing only in polyno-
mial expressions with the function’s complexity. The time needed for
its inverse form, however (that is, for reconstructing from the func-
tion’s output its presupposed input), would grow at exponential and
therefore unviable rates. One-way functions, in other words, hide an
algorithm from its result. For software, this cryptographic effect
offers a convenient way to bypass the fact that by virtue of Turing’s
proof the concept of mental property as applied to algorithms has
become meaningless. Precisely because software does not exist as a
machine-independent faculty, software as a commercial or American
medium insists on its status as property all the more. Every license,
every dongle, every trademark registered for WP, as well as for
WordPerfect, proves the functionality of one-way functions. In this
country, notwithstanding all mathematical tradition, even a copy-
right claim for algorithms has recently succeeded. And, finally, 1B;M
has done research on a mathematical formula for measuring the dis-
tance in complexity between an algorithm and its output. Whereas in
the good old days of Shannon’s mathematical theory of information,
the maximum in information coincided strangely with maximal
unpredictability, o r noise,’ the new IBM measure, called logical

F r i c d r i r b K i t t l c r

depth, has been defined as follows: "The value of a message . . .
appears to reside not in its information (its absolutely unpredictable
pars), nor in its obvious redundancy (verbatim repetitions, unequal
digit frequencies), but rather in what may be called its buried redun-
dancy-parts predictable only with difficulty, things the receiver
could in principle have figured out without being told, but only at
considerable cost in money, time, or computation. In other words,
the value of a message is the amount of mathematical or other work
plausibly done by its originator, which the receiver is saved from hav-
ing to repeat."" Thus, logical depth in its mathematical rigor could
advantageously replace all the old, everyday language definitions of
originality, authorship, and copyright in their necessary inexactness,
were it not for the fact that precisely this algorithm intended to com-
pute the cost of algorithms in general is Turing-uncomputable
itself."

Under these tragicconditions, criminal law, at least in Germany,
has recently abandoned the very concept of software as mental prop-
erty; instead, it defines software as necessarily a material thing. The
high court's reasoning, according to which no computer program
could ever run without the corresponding electrical charges in silicon
circuitry,'2 can illustrate the fact that the virtual undecidability
between software and hardware by no means follows, as systems the-
orists would probably like to believe, from a simple variation of
observation on points. On the contrary, there are good grounds to
assume the indispensability and, consequently, the priority of hard-
ware in general.

Only in Turing's paper On Computable Numbers with an
AppIication to the Entxheidtmgpvblem does there exist a machine with
unbounded resources in space and time, with an infinite supply of
raw paper and no constraints on computation speed. All physically
feasible machines, in contrast, are limited by these parameters in
their very code. The inability of Microsoft DOS to tell more than the
first eight letters of a file name such as WordPerfect gives just a trivial
or obsolete illustration of a problem that has provoked not only
increasing incompatibilities between the different generations of
eight-bit, sixteen-bit, and thirty-two-bit microprocessors, but also a
near impossibility of digitalizing the body of real numbers formerly
known as nature.l3

Pierre
Highlight

T b c r c I s N o S o f t w a r e

According to Brosl Hasslacher of LAX Alamos National Laboratory:

This means [that] we use digital computers whose architecture is given to
us in the form of a physical piece of machinery, with all its artificial
constraints. We must reduce a continuous algorithmic description to one
codable on a device whose fundamental operations are countable, and
we do this by various forms of chopping up into pieces, usually called
discretization . . . The compiler then futther reduces this model to a
binary form determined laqely by machine cwtmints.

original problem, whose sbucture is arbitrarily fixed by a differencing
scheme and computatimal architecture chosen at random. The only
remnant of the continuum is the use of radix arithmetic, which has the
property of weighing bits unequally, and for mlinear sy.tems is the
scurce of spurious singularities.

phyxal M d with physical devices. This is not the idealized and serene
process that we imagine when usualbq arguing about the fundamental
structms of computation, and very far from Tunng machines.”

Thus, instead of pursuing the physical Church-Turing hypothe-
sis and “injecting an algorithmic behavior into the behavior of the
physical world for which there is no evidence,”” one has rather to
compute what has been called “the price of programmability” itself.
This all-important property of being programmable has, in all evi-
dence, nothing to do with software; it is an exclusive feature of hard-
wares, more or less suited as they are to house some notation system.
When Claude Shannon, in 1937, proved in what is probably the most
consequential M.A. thesis ever written that simple telegraph switch-
ing relays can implement, by means of their different interconnec-
tions, the whole of Boolean algebra,I6 such a physical notation system
was established. And when the integrated circuit, developed in the
1970s out of Shockley’s transistor, combined on one and the same
chip silicon as a controllable resistor with its own oxide as an almost
perfect isolator, the programmability of matter could finally “take
control,” just as Turing had predicted.” Software, if it existed, would
be just a billion-dollar deal based on the cheapest elements on earth.
For in their combination on chip, silicon and its oxide provide per-
fect hardware architectures. That is to say, millions of basic elements
work under almost the same physical conditions, especially as regards
the most critical, namely, temperature-dependent degradations, and
yet electrically all of them are highly isolated from each other. Only

The outcome is a discrete and synthetic micraworfd image of the

Thls is whatwe actually dowhen we compute upa model of the

Pierre
Highlight

F r i c d r i c b K i t t l c r

this paradoxical relation between two physical parameters, thermal
continuity and electrical discretization on chip, allows integrated cir-
cuits to be not only finite-state machines like so many other devices
on earth, but to approximate that Universal Discrete Machine into
which its inventor’s name has long disappeared.

This structural difference can easily be illustrated. “A combina-
tion lock,” for instace, “is a finite automaton, but it is not ordinarily
decomposable into a base set of elementary-type components that
can be reconfigured to simulate an arbitrary physical system. As a
consequence it is not structually programmable, and in this case it is
effectively programmable only in the limited sense that its state can
be set for achieving a limited class of behaviors.” On the contrary, “a
digital computer used to simulate a combination lock is structurally
programmable since the behavior is achieved by synthesizing it from
a canonical set of primitive switching components.””

Switching components, however, be they telegraph relays,
tubes, or, finally, microtransistor cells, pay a prize for their very
composability. Confronted as they are with a continuous environ-
ment of weather, waves, and wars, digital computers can cope with
this real number avalanche only by adding element to element.
However, the growth rate of possible interconnections between
these elements, that is, of the computing power as such, has proven
to have as its upper bound a square root function. In other words, it
cannot even “keep up with polynomial growth rates in problem
size.”” Thus, the very isolation between digital or discrete elements
accounts for a drawback in connectivity that otherwise, “according
to current force lam” as well as to the basics of combinatorial logics,
would be bounded only by a maximum equalling the square number
of all elements involved.’’

Precisely this maximal connectivity, on the other, physical side,
defines nonprogrammable systems, be they waves or beings. That is
why these systems show polynomial growth rates in complexity and,
consequently, why only computations done on nonpro_pmmable
machines could keep up with them. In all evidence, this hypothetical,
but all too necessary, type of machine would constitute sheer hard-
ware, a physical device working amidst physical devices and subject
to the same bounded resources. S o h a r e in the usual sense of an
ever-feasible abstraction would not exist any longer. The procedures

1 f4

Pierre
Highlight

Pierre
Highlight

T b r r r I r N o S o f t w r r r

of these machines, though still open to an algorithmic notation,
should have to work essentially on a material substrate whose very
connectivity would allow for cellular reconfigurations. And even
though this “substrate can also be desctibed in algorithmic terms, by
means of simulation,” its “characterization is of such immense
importance for the effectiveness . . . and so closely connected with
choice of hardware,” that programming it will have little to do any
longer with approximated Turing machines.”

In what I have med to describe as badly needed machines that
are probably not too far in the future (and drawing quite heavily on
recent computer science), certain Dubrovnik observers’ eyes might
be tempted to recognize, under evolutionary disguises or not, the
familiar face of man. Maybe. At the same time, however, our equally
familiar silicon hardware obeys many of the requisites for such highly
connected, nonprogrammable systems. Between its million transis-
tor cells, some million to the power of two interactions always
already take place. There is elecnon diffusion; there is quantum-
mechanical tunneling all over the chip.” Technically, however, these
interactions are still treated in terms of system limitations, physical
side effects, and so on. To minimize all the noise that i t would be
impossible to eliminate is the price we pay for structurally program-
mable machines. The inverse strategy of maximizing noise would not
only find the way back from IBM to Shannon, it may well be the only
way to enter that body of real numbers originally known as chaos.

