
The authors of the eighteenth-century French Encyclopédie midwifed the birth of a 

language to describe artisans’ work and their machines, and, over the course of centu-

ries, this became the ancestor of what we know today as programming languages. By 

printing as text and diagrams what the artisans spoke in the workshop, the encyclo

pedists paired the mechanical arts and the liberal arts. This coupling was a radical inter-

vention at a time and place where the two had been kept separate for centuries. The 

French encyclopedists translated the everyday language of the workshop, a language of 

the mechanical arts, into a language of literature and learned discourse, the language 

of the liberal arts.

Like all remarkable translators, the encyclopedists had to invent new language. Spe-

cifically, they invented what I will call a “work language” and another I will term a 

“machine language.” I define “work language” to mean the language—the text and 

talk—employed to describe the processes and products of work. A “machine language” 

is a work language employed in the design and analysis of machines. When a machine 

is designed to replace a human in a work process, the actions performed by the human 

must be translated into a machine language.

At the center of computing is the work language and machine language of opera-

tions, birthed in the eighteenth-century workshops of the French artists, designers, and 

artisans. A century after the publication of the Encyclopédie, Charles Babbage and Ada 

Lovelace together were able to translate a work language of operations into a machine 

language in an endeavor Lovelace called a “science of operations.” Even now, the oper-

ations of computing are confused with the functions of mathematics, but there is a 

huge gap between the artisans’ operations of computing and the functions of mathe

matics. Many careers have been devoted to trying to bridge that gap—to make com-

puting a form of pure or applied mathematics—yet no perfect translation between the 

two has been found. Consequently, computing remains an art and a craft quite unlike 

3  Language



58	 Chapter 3

mathematics and not at all a science written in functions, despite Lovelace’s wishful 

phrase of a “science of operations.”

Bacon’s Organum

Lord Chancellor Francis Bacon was one year away from political disgrace and a fall 

from power and was six years away from his death when he published the Novum Orga­

num Scientiarum (New Instrument of Science), considered the founding document of 

empirical science and the first description of a form of logical induction subsequently 

named the “scientific method.”

The “organum,” the “instrument,” in his title refers to Aristotle’s writings on logic 

collected under the title Organum. Bacon understood the study of nature, under the 

influence of Aristotelian philosophers, to have been stalled for two thousand years. His 

book was a critique of the Aristotelians and was a proposal to refound the study of nature 

by, among other things, patterning it after and enlisting the aid of the mechanical arts.

According to Bacon, compared to the mechanical arts, the liberal arts had made 

almost no progress in the previous two millennia. Bacon attributes various “discover-

ies” to the mechanical arts, including printing, gunpowder, and the compass: “For these 

three have changed the appearance and state of the whole world: first in literature, 

then in warfare, and lastly in navigation; and innumerable changes have been thence 

derived, so that no empire, sect, or star, appears to have exercised a greater power and 

influence on human affairs than these mechanical discoveries.”1

Like many writers of the era, Bacon figured nature as feminine and consequently 

described the study of nature in terms of gender, sex, and reproduction. For instance, 

he writes of the “womb of nature.” If nature-as-woman were a loose or rare metaphor 

in Bacon’s writings, one might pay it no heed, but, as historian and philosopher of sci-

ence Evelyn Fox Keller writes in a chapter titled “Baconian Science: The Arts of Mastery 

and Obedience,”2 Bacon’s sexual imagery was systematic, ubiquitous to his writings 

about science and thus not at all casual. Bacon’s aim was for man to attain mastery over 

nature for his purposes, just as in seventeenth-century England a husband was thought 

to be within his rights to gain mastery over and require obedience from his wife.

At first, Bacon’s prescription for the reinvigoration of the sciences seems like a call 

for domestic abuse made by a cuckold,3 hardly a positive role model for the scientist. 

But further on in the Novum Organum, Bacon moves to several positive ideas for rein-

vigorating the sciences: “The plan to be pursued is this: all the mechanical, and even 

the liberal arts (as far as they are practical), should be visited and thoroughly examined, 

and thence there should be formed a compilation or particular history of the great 
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masterpieces, or most finished works in each, as well as of the mode of carrying them 

into effect.”4

The Encyclopedists as Midwives

Many, including German mathematician and philosopher Gottfried Leibniz, were sub-

sequently inspired by this plan for a compilation of the masterworks of the arts—

mechanical and liberal. A century after the publication of Bacon’s book, the compilation 

was undertaken as a large-scale project conducted by philosopher and writer Denis 

Diderot, mathematician Jean Le Rond d’Alembert, and their colleagues, who together 

produced the multivolume Encyclopédie.

However, the encyclopedists did not figure their role as being akin to the role of man 

over nature or husband over wife. Rather, they saw themselves in a very different role, 

remarkably that of midwife; not literally a midwife but “literately” a midwife—one 

who could put the inchoate, oral descriptions of artists and artisans into a printable, 

literate language.

They saw this as a necessary role because the artisan—like the artist and the designer 

of today—was frequently assumed to be a taciturn intuitive worker able to operate and 

practice but unable to articulate or interrogate machines, instruments, and processes 

of production and manufacturing. In the “Preliminary Discourse” to the Encyclopédie, 

Jean Le Rond d’Alembert wrote, “Most of those who engage in the mechanical arts 

have embraced them only by necessity and work only by instinct. Hardly a dozen 

among a thousand can be found who are in a position to express themselves with some 

clarity upon the instrument they use and the things they manufacture. We have seen 

some workers who have worked for forty years without knowing anything about their 

machines.”5

Yet d’Alembert, reporting on work that was directed primarily by his co-editor 

Diderot—the son of an artisan, a cutler—wrote, “We approached the most capable of 

them in Paris and in the realm. We took the trouble of going into their shops, of ques-

tioning them, of writing at their dictation, of developing their thoughts and of drawing 

therefrom the terms peculiar to their professions, of setting up tables of these terms and 

of working out definitions for them, of conversing with those from whom we obtained 

memoranda, and (an almost indispensable precaution) of correcting through long 

and frequent conversations with others what some of them imperfectly, obscurely, and 

sometimes unreliably had explained.”6 He summarized by saying, “With [the artisans], 

it was necessary to exercise the function in which Socrates gloried, the painful and 

delicate function of being midwife of the mind, obstetrix animorum.”7
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I will argue that Diderot, d’Alembert, and the encyclopedists did indeed midwife 

the birth of a language to describe artisans’ work and their machines and that, over the 

course of the centuries, this became the root of what we know today as programming 

languages. By printing as text and diagrams what the artisans usually just spoke in the 

workshop, the encyclopedists paired the mechanical arts and the liberal arts. This pair-

ing was a radical intervention at a time and place where the two had been kept separate 

for centuries.

The Aristotelian Barrier

We can call this traditional separation the “Aristotelian barrier.” In the words of histo-

rian of science Pamela Long, “Aristotle delineated three areas of human activity: first, 

material and technical production (techne); second, action (praxis), such as political or 

military action, that requires judgment in contingent or uncertain situations (phrone­

sis); and third, theoretical knowledge or knowledge of unchanging things (episteme). 

Aristotle’s separation of material production from action and from theoretical knowledge 

presupposed a hierarchy with techne at the bottom and episteme, or theoretical knowl-

edge, at the top.”8

These epistemological divisions led to divisions in the educational system, where 

the liberal arts were taught separately from the mechanical arts. To this day, the Aristote-

lian barrier separates language that belongs to the liberal arts (specifically the language 

arts of the trivium) from machines that belong to the mechanical arts.

Given a social context in which this barrier is accepted, d’Alembert’s comments 

about inarticulate artisans seem quite natural, but notice also how self-contradictory 

d’Alembert’s declaration is when he states that he was “writing at their [the artisans’] 

dictation.” So, the artisans could not express themselves in words, yet the words writ-

ten about their various crafts are the words dictated by the artisans themselves!?

Obviously, the artisans could communicate their craft; they just could not do it in 

the then-current languages of the liberal arts. Put more plainly, the workingman’s lan-

guage needed to be translated into the upper-class language of the liberal arts before it 

could be printed in the Encyclopédie. Diderot and d’Alembert’s accomplishment, thus 

phrased, is an accomplishment of translation, a translation across class divides.

Breaking the Aristotelian barrier was an imperative for Bacon and then for Diderot 

and d’Alembert, and it continues to be an imperative even today. Pamela Long’s own 

research emphasizes the important role of artisans in the history of science. Break-

ing the Aristotelian barrier in the history of astronomy, for instance, might lead us to 
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investigate the role of the artisan who made Galileo’s telescope. Are Galileo’s astro-

nomical discoveries to be credited to Galileo or/and to the artisans who made the 

discoveries possible?

Breaking the Aristotelian barrier also remains one of the most pressing issues in 

contemporary philosophy. Philosopher Bernard Stiegler both highlighted and broke 

this barrier in the first volume of his book Technics and Time, where he wrote, “At 

the beginning of its history philosophy separates tekhné from épistème. … The separa-

tion is determined by a political context, one in which the philosopher accuses the 

Sophist of instrumentalizing the logos as rhetoric and logography, that is, as both an 

instrument of power and a renunciation of knowledge. It is in the inheritance of this 

conflict—in which the philosophical épistème is pitched against the sophistic tekhné, 

whereby all technical knowledge is devalued—that the essence of the technical entities 

is conceived.”9

As industrial capitalism came to dominate the economy, the Aristotelian barrier 

was an impediment for the upper classes to understand the sources of their wealth. 

Writing almost a century after Diderot, in the preface to his book On the Economy of 

Machinery and Manufactures,10 Charles Babbage admonishes his peers—those who have 

wealth, leisure, and a liberal arts education—for being ignorant of the mechanical 

arts. He writes, “Those who possess rank in a manufacturing country, can scarcely be 

excused if they are entirely ignorant of principles, whose development has produced 

its greatness. The possessors of wealth can scarcely be indifferent to processes which, 

nearly or remotely have been the fertile source of their possessions. Those who enjoy 

leisure can scarcely find a more interesting and instructive pursuit than the examina-

tion of the workshops of their own country, which contain within them a rich mine 

of knowledge, too generally neglected by the wealthier classes.”11 Moreover, Babbage 

tells his peers that learning something about the sources of their wealth will not be too 

difficult: “The difficulty of understanding the processes of manufactures has unfortu-

nately been greatly overrated. To examine them with the eye of a manufacturer, so as 

to be able to direct others to repeat them, does undoubtedly require much skill and 

previous acquaintance with the subject; but merely to apprehend their general princi

ples and mutual relations, is within the power of almost every person possessing a 

tolerable education.”12

With these statements, Babbage clearly indicates that his perspective is one from the 

berth/birth of the upper class; he also assures his readers that the mechanical arts can 

in fact be translated into the languages of the liberal arts since, at the time, “a tolerable 

education” was, axiomatically, for the upper class, a liberal arts education.
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Dramatis Personae

Possible and desirable though it may be, breaking the Aristotelian barrier entailed—

and still necessitates—a move beyond one’s education and upbringing, since we are all 

circumscribed by social, political, economic, and cultural conditions that govern who 

knows what and who does what. Moreover, generally speaking, most educational insti-

tutions preserve the Aristotelian barrier. As d’Alembert pointed out, those apprenticed 

in an artisan’s workshop do not necessarily know how to write. Conversely, even today, 

those who get a liberal arts education are not trained to become automobile mechan-

ics. Concisely, race, class, gender, sexuality, occupation, and education are performed 

within roles that are not easily refused. To find alternatives to our assigned roles, we 

need to imagine dramatis personae that blend, divide, or diverge from conventional 

roles. This is a suggestion inspired by philosopher Gilles Deleuze.13

If we look carefully at the dramatis personae proposed respectively by d’Alembert 

and Babbage, we can see that they were catalytic in the creation of new institutions of 

knowledge and practice. D’Alembert acknowledges that the image of philosopher-as-

midwife is at least as old as Socrates, yet even now, Socratic dialogue is explosive, if not 

revolutionary. As it was performed by Socrates, midwifery was a practice of intensively 

questioning someone’s common sense, thereby birthing a new understanding of self.

Babbage’s preface to On the Economy of Machinery and Manufactures evokes what at 

first glance seems to be a much less demanding role. Babbage seems to be describing a 

“gentleman mechanic” akin to the “gentleman farmer”—a persona that would require 

the gentleman to have some knowledge about how his wealth was produced but to 

acquire this knowledge as a form of leisure, not as a matter of necessity.

Babbage’s preface tells his gentleman reader that he will reveal an entertaining diver-

sion for his leisure time and, simultaneously, that the principles of the mechanical arts 

to be explained are not at all a diversion for him (Babbage) but rather should be seen 

as the very foundation of his intellectual life and the probable source of wealth for 

anyone who will benefit from the industrial revolution.14 Babbage’s aspirations exceed 

entertainment. He wants to inspire his gentleman reader to become a manufacturer.

In a different essay, Babbage explicitly names the role he would have for his gentleman 

and all men: “It is not a bad definition of man to describe him as a tool-making animal.”15 

Babbage’s dramatis persona is not Homo sapiens, the wise, rational, intelligent man. Nei-

ther is he what cultural historian Johan Huizinga has called Homo ludens, the man of 

leisure, man the player.16 Babbage’s dramatis persona is Homo faber, man the maker.

Many philosophers, political theorists, and economists have elaborated on the 

cultural, social, economic, and political consequences of an ideology that places the 
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persona of Homo faber at its center. This trope can be elaborated by distinguishing 

between seemingly close variants. If we say that “man the maker” is a pivotal figure, 

we are pressed to consider just what it is that these men make and what kind of work 

they must engage in to make what they do. For instance, is the agricultural laborer 

fundamentally different from the construction worker, the factory worker, the office 

worker, or the researcher who tills the fields of knowledge? If so, is the distinction made 

according to how the work is done or according to what is made?

Using the definition of ideology discussed in chapter 2, it is possible to examine 

Baconian science, the arts and sciences of the Encyclopédie, and Babbage’s “science of 

operations” as distinct ideologies elaborated around their respective dramatis persona: 

husband, midwife, Homo faber.

Analogously, we can consider the brilliance and perspicuity of Turing’s 1936 article 

as resulting from his audacious move to put the modest dramatis persona of human 

computer at the center of a rethinking of mathematical work. Turing’s machines put 

the “low-level” work of calculation into the center of the “high-level” work of mathe

matics. In a phrase, Turing—like Bacon, Diderot, and Babbage before him—broke the 

“Aristotelian barrier.”

Homo faber and Work versus Homo laborans and Labor

Many languages include at least two words for “work.” In English, we have “labor” and 

“work.” In French, the analogous terms are “travailler” and “oeuvrer.” In her book The 

Human Condition, philosopher Hannah Arendt points out that this double term exists 

not only in English and French but also in many other languages, including German, 

Greek, and Latin.17 Arendt hinges one of the main arguments of her book on this 

repeated difference, which philosopher John Locke references in his Second Treatise of 

Civil Government, where he writes about “the labour of our body and the work of our 

hands” (section 26).

Arendt points out that in ancient Greece labor was shunned and work was esteemed. 

This valuation lingers on in our everyday locutions, where we can talk about, for 

example, a “work of art” but not a “labor of art,” or, in English, borrowing from French, 

where an artist’s work can be referred to as the artist’s “oeuvre” but not the artist’s “tra-

vail” (which in English would mean laborious or painful effort).

According to Arendt, in ancient Greece, labor included those efforts made by 

women, slaves, and domestic animals to sustain and reproduce life and the neces-

sities of life. Work was the production of free men in public for public, rather than 

private, purposes. The private realm was considered a position of privation, and labor 
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was considered the activity that took place in private. Work was an act of honor and 

renown that took place in public. Arendt’s distinction describes the circumstances in 

which some forms of effort, production, and reproduction are unseemly or hidden 

from view and other forms of work are highlighted, highly valued, and given center 

stage. Furthermore, class and gender strictly regulated the differences between labor 

and work, private and public. Arendt refers to those men engaged in work as Homo 

faber. Those engaged in labor are Homo laborans or, following Arendt, Animal laborans.

Arendt contrasts this ancient Greek valuation of work over labor (and thus 

workers over laborers) with political economist Karl Marx’s idea that labor (and thus 

laborers) should be central to and thus at the top of all valuation.18 So one can see 

that entire ideologies can be elaborated around images of work and who does what 

kind of work.

Work Languages and Machine Languages

To articulate various kinds of work and who or what does what kind of work (or labor), 

I introduce two constructs of my own design. One I call “work languages,” and the 

other I term “machine languages.” I define “work language” to mean the language—

the text and talk—employed to describe the processes and products of work. So, for 

instance, one might scrutinize Benjamin Franklin’s writings about work—“Early to bed 

and early to rise makes a man healthy, wealthy, and wise”19—in order to argue that 

contemporary business practices (e.g., as inscribed in documents of corporate mission, 

legal contracts, legislation, or employee manuals) are still tied to Protestant ethics in 

a variety of ways.20 Each age, each culture, each industry, and each economy has one 

or more work languages. By examining differences and similarities between these lan-

guages, one can interrogate what work is here and now and how it contrasts with work 

as it was there and then.

Central to today’s work are the almost performative qualities of “machine lan-

guages,” a subset of work languages employed in the design and analysis of machines. 

To adequately describe how a machine works is tantamount to demonstrating the work 

to be done in exacting detail. When a machine is designed to replace a human in a 

work process, when work is automated, the actions performed by the human must be 

translated into a machine language.

Two work languages are central to this chapter. The first is a work language of phys-

ics that begins as a language of construction and evolves into a language of informa-

tion. This first work language is descriptive of what Arendt calls “labor.” The second is 

a work language of the arts that eventually becomes a language of computation. The 
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second is descriptive of some of the activities that Arendt calls “work.” The two lan-

guages are closely related but distinct.

A Work Language of Construction, Physics, and Information

The work language of physics is a language of calculation developed in the eighteenth 

century by a network of Enlightenment engineers, scientists, philosophers, and 

mathematicians, including French mathematician and scientist André-Marie Ampère 

(1775–1836), Swiss scientist and mathematician Daniel Bernoulli (1700–1782), French 

engineer and scientist Charles-Augustin de Coulomb (1736–1806), German scien-

tist and mathematician Georg Simon Ohm (1789–1854), Italian scientist Alessandro 

Giuseppe Volta (1745–1827), and Scottish inventor James Watt (1736–1819). Origi-

nally, their work language was used to measure the activity of men and machines as 

heat or electrical charge. Thus, we have the quantitative measures of the watt, the 

joule, and the coulomb—all still used today.

French fortifications engineer Charles-Augustin de Coulomb stated at the beginning 

of his 1775 treatise (republished in 1821) what he took to be the fundamental unit of 

work. He uses this unit to compare the work of machines and the work of men: “We 

have just seen that the effect of a machine can always be measured according to a weight 

multiplied by the height to which it has been raised.”21 This measure of work—​

weight multiplied by the height to which it is raised—is still central to contemporary 

physics and engineering. It reduces what might be a set of very complicated move-

ments to a single number labeled with a unit; specifically, the unit of foot-pounds. In 

Arendt’s terms, this is properly a language of labor and not a language of work, but in 

contemporary technical terms, a foot-pound force is defined to be a unit of energy or 

work, so in this section we will persist in calling it a work language.

The formalization of this language is defined in the unit of work named after James 

Prescott Joule (1818–1889), an English scientist and beer brewer.22 The definition of a 

joule in turn relates together the eponymous units of many of the participants of the 

network listed earlier—and also includes units named for Isaac Newton (1643–1727) 

and Blaise Pascal (1623–1662). One joule, usually written as J, is a unit of work equal 

to the expenditure of energy necessary to apply one newton—that is, to accelerate one 

kilogram of mass at the rate of one meter per second squared—through a distance of 

one meter. Alternatively, a joule can be defined as passing an electric current of one 

ampere—that is, one coulomb per second—through a resistance of one ohm for one sec-

ond. We can also understand a joule to be the heat required to raise the temperature of 

one gram of water by 0.24 kelvin, a measure of temperature named after British physicist 
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and engineer Lord Kelvin (1824–1907). This definition can be written as an algebraic 

equation:23

J = kg ×m2

s2
= N ×m = Pa ×m3 = W × s = C × V

This equation does far more than Coulomb’s sentences of 1775. It succinctly relates 

not just weight and height but also heat and electricity, mechanics, thermodynamics, 

and electrodynamics—many of the fluxes and flows investigated independently in the 

eighteenth century.

This line of research was continued through the nineteenth century as thermo

dynamics, with practical application to, among other things, Joule’s business of brewing 

beer, the construction of steam engines, and, eventually, internal combustion engines. 

The unit of one joule divided by kelvin (that is, a measure of work or energy divided 

by temperature) turned out to be pivotal for the development of thermodynamics: J/K 

is the unit of entropy, the measure of (dis)order! Who could have foreseen such a direct 

connection between work and disorder? Entropy is a measure of the number of ways in 

which a system may be arranged; that is, its measurement in a system is proportional 

to the number of possible states of the system.

In the middle of the twentieth century, Claude Shannon created a formal definition 

of information based on this definition of entropy. According to Shannon, entropy is 

equal to the average amount of information contained in a message.24 This we know 

today as the basis for information theory.

This definition of information has its origins in the eighteenth-century problem 

of measuring how much work a common laborer accomplishes lifting and carrying loads 

at a construction site. Using Arendt’s terms, one could say that the language of physics 

and information is a formalization of what is done by Homo laborans. Clearly, this 

language and its earlier formulations are apt for work in mechanics, thermodynamics, 

and electrodynamics, but they are not the languages of the arts and computation. They 

are inadequate when used to analyze the work of Homo faber. In Arendt’s terms, the 

language of physics and information is the language of labor; in contrast, the language 

of computation is the language of skilled work.25

Work Languages Have Limits

Clearly, the work language of physics and information has many uses and has been at 

the center of many innovations. Nevertheless, each work language has its limits when 

applied to activities for which it was not developed. Consequently, it is not surprising 
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that many students of introductory physics have been struck by the limits of its work 

language.

For example, let us imagine that you are a house builder’s apprentice. Your name is 

“Sisyphus.” In the morning, your duty is to take the builder’s toolbox out of the truck 

and open it up. The builder climbs to the second floor of the house under construction. 

Whenever he calls for a tool—“Sisyphus, bring me a hammer!”—your job is to get it out 

of the toolbox, climb the ladder, give it to him, wait until he finishes the task for which 

he needed the tool, and then climb down the ladder again and put the tool in the tool-

box.26 According to the definition of work used in physics, at the end of the day, if you 

have performed your job well and returned all of the tools back to the box, you have 

done no work! You lifted certain weights in the form of tools to certain heights at the 

top of the ladder; that constitutes work. But you returned those same weights back to 

the toolbox on the ground; that constitutes negative work. Therefore, the total work 

completed by you is zero! Poor Sisyphus!

A Work Language of the Arts

To better describe the activities of Sisyphus and the house builder, one needs to use a 

work language of the arts. This work language is not the language of physics and infor-

mation. Its origins can be seen in Diderot and d’Alembert’s Encyclopédie.

Let us look at the Encyclopédie’s plates depicting the work of artisan pin makers 

(see figures 3.1, 3.2, and 3.3). Do you see men and machines lifting a lot of weight? 

No, right? So, even if the work language of physics and information is the right one 

for describing the labor of coal mining and construction sites, it is not the right one for 

describing the work of the mechanical arts. In fact, it is absurd when employed in the 

artisan’s workshop.

What is the appropriate work language for describing what artisans, designers, and art-

ists do? As it happens, a second work language was developed in the eighteenth century, 

and, curiously, this history starts at the same place with some of the same people as in 

the history of the joule. Unlike the work language of physics, this second language does 

not reduce the description of work to a single number (of joules). Rather, the work lan-

guage of the arts can be employed to describe how work is done. The work language of the 

arts anticipates what we know today as computer programming languages.

Its history is referred to within the literature of computer science but rarely told in 

full. For example, one of the founders of the field of computer science, Herbert Simon, 

quipped in 1958 that “Physicists and engineers had little to do with the invention of 

the digital computer. … The real inventor was the economist Adam Smith.”27



Figure 3.1
Plate I of the Encyclopédie entry for “Pinmaker.”
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What is Simon referring to here? Recall that book 1, chapter 1, of Adam Smith’s 

best-known work, The Wealth of Nations (1776), is on the division of labor, specifically 

in the production of pins. Smith wrote, “The greatest improvements in the productive 

power of labor, and the greater part of the skill, dexterity, and judgement with which it 

is any where directed, or applied, seem to have been the effects of the division of labor.” 

A division of labor is an organization of collaboration in which the work to be done is 

distributed between different people using a number of tools and machines. Herbert 

Simon is suggesting that we examine how work and the division of labor are at the core 

of the computer.

If we want to maintain some fidelity to the philosophical language of Arendt, we 

would say that when Smith describes a division of labor he is, in Arendtian terms, 

describing a division of work. This is because Smith’s description—as we will see—

draws on an entirely different kind of language than the work language of physics just 

Figure 3.2
Plate II of the Encyclopédie entry for “Pinmaker.”
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described. Adam Smith’s work language has its beginnings in a set of drawings detailing 

a workshop producing pins in a little town in Normandy: Laigle, France.

Engineer Jean-Rudolphe Perronet did the original observational work at this site. Let 

us call the observational work—anachronistically—ethnographic work, so that we can 

be reminded of the importance of contemporary human scientists’, especially ethno

graphers’, contributions to the design of software and hardware.28 Trained in civil engi-

neering, mathematics, and mechanics, Perronet joined the engineering corps of the 

Ponts et Chaussées in 1735.29 Soon thereafter, he was appointed the chief engineer for 

the district of Alençon and was primarily concerned with the construction and paving 

of roads.

During the same period, however, Perronet also studied the workshops of artisans 

and craftsmen and wrote two manuscripts on the manufacture of pins at a workshop 

in the nearby town of Laigle.30 While neither of these manuscripts was published 

Figure. 3.3
Plate III of the Encyclopédie entry for “Pinmaker.”



Language	 71

immediately, Perronet contributed to the entry for “Pin” (Épingle) in Diderot and 

d’Alembert’s Encyclopédie.31 Moreover, Perronet’s detailed descriptions of how the crafts-

men manufactured the pins, how they used their machines, and how the machines 

were designed anticipated the work language of the Encyclopédie, a collection that 

incorporated many articles on contemporary methods of the mechanical arts.

Design historian Antoine Picon discusses the three main terms of this work lan-

guage of the Encyclopédie—gestures, operations, and processes: “The common threads 

that connect the different articles devoted to the arts and crafts are the description of 

elementary gestures of production, how these movements are integrated and thereby 

define aggregate technical operations, and the logic of chaining together these opera-

tions to form processes organized according to a division of labor. … From individual 

movement to process chain, the thread that weaves them together is analogous to the 

overall aim of Diderot, D’Alembert, and their Encyclopédie collaborators: the integration 

of all forms of knowledge.”32

For example, here are some extracts from the four-page Encyclopédie entry for 

“Pinmaker.” It summarizes in eighteen steps how straight pins were made: “A pin under

goes eighteen operations before it becomes a commercial commodity. 1. one yellows 

the brass wire … 2. one pulls the wire around the bobble … 3. one draws out the wire … ​

4. one cuts the wire … 5. one puts a point on it. …”33 Note that this looks like a recipe 

for making pins. Figures 3.1, 3.2, and 3.3 are the illustration plates for the entry. As we 

will see in chapter 4, on algorithms, algorithms are frequently compared to recipes. 

One might say that the Encyclopédie includes a set of recipes for making not just food but 

all kinds of different things.34

Adam Smith’s example of pin making was inspired by his reading of d’Alembert 

and Diderot’s Encyclopédie.35 A few years later, in 1791, Gaspard Prony—charged by 

the French government with producing a set of enormous and detailed logarithmic 

and trigonometric tables—borrowed back from Adam Smith this image of the division 

of labor, citing Smith and claiming he “could manufacture logarithms as easily as one 

manufactures pins.”36 Prony organized a great number of working-class nonmathema-

ticians to perform as a set of “computers” in order to calculate the tables.

There is, however, some sort of oedipal perversity in Prony’s claim that he was 

inspired by Smith, because, as we have seen, Smith’s source was Diderot’s Encyclopédie, 

to which Perronet contributed. And Perronet was not just Prony’s professor, mentor, 

supervisor, and eventual collaborator but also his predecessor as the first director of the 

École des Ponts et Chaussées. Prony succeeded him as director in 1798.

We might say instead that the real inventors of the computer were Perronet, Prony, 

and the encyclopedists and that, contrary to Herbert Simon’s attribution, the only 
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contribution Adam Smith made was to copy from the Encyclopédie so that it was ulti-

mately cited by Prony. My point is that Prony could have received his information 

about the division of work and the production of pins directly from Perronet and that 

Smith was just an unlikely middleman. But this unlikely detour through Scotland—

through the writings of Adam Smith—that connects the genealogy of computing from 

Perronet to Prony is the source of computer scientist and Nobel Prize–winning econo-

mist Herbert Simon’s quip that Smith was the inventor of the computer.

Babbage and the Translation from Manual to Machine Operations

A few years after Prony’s achievement, British mathematician, philosopher, and engi-

neer Charles Babbage noted how Prony’s division of work could be incorporated as a 

machine. In my preferred terms, Babbage thus translated the work language of the Ency­

clopédie into a machine language. He achieved this in plan but not in physical form; 

his Analytical Engine was not completed in his lifetime.37 Nevertheless, even on the draw-

ing board, it became clear that the machine language he forged out of the Encyclopédie’s 

work language was from a very different family than logic or mathematics.

The differences appear clearly in Babbage’s drawings. Historian Mark Priestley tells 

us, “In the course of this work, Babbage found that the traditional method of using 

drawings to describe machinery was inadequate. A drawing could only represent the 

state of a machine at one instant, and so provided little assistance in understanding 

the sequences of movements involved in a complex mechanism or in working out the 

appropriate timing of the movements of its interacting parts.”38 Consequently, Bab-

bage was driven to invent new graphical notation for machines that combined textual 

annotation and the illustration of the structure of the parts of the machine with a 

novel means to describe the succession of movements that were to take place in the 

machine. (See figure  3.4.) In the terms of the Encyclopédie, Babbage had to develop 

a new means to diagram the gestures, operations, and sequences of movements and 

operations—that is, processes.39

As Picon points out, operations were at the semantic foundations of the Encyclo­

pédie’s work language. Soon after Babbage completed his design, it became clear that oper-

ations were central to his machine language, too. English mathematician Ada Lovelace 

argued, in elucidating the differences between the operations of Babbage’s machine 

and the functions of arithmetic and calculus, that Babbage’s machine would require 

a new field of research beyond mathematics, a field she called “a science of opera-

tions”: “The science of operations … is a science of itself, and has its own abstract truth 

and value; just as logic has its own peculiar truth and value, independently of the 



Language	 73

subjects to which we may apply its reasonings and processes.”40 Because of her writings 

on Babbage’s machine, Lovelace is acknowledged to be the first computer programmer, 

the first software designer avant la lettre, and indeed, key issues she identified in 1843 

concerning the rendering and execution of operations are still concerns of computer 

science today.

Functions versus Operations

The language of labor, the language of physics, described previously, is a language of 

functions. In contrast, this second language is a work language of operations, the lan-

guage of the arts. In other words, the latter is a work language of operations and not of 

mathematical functions. To underline Lovelace’s point, computing is not mathematics.

Figure 3.4
The general plan of Mr. Babbage’s Great Calculating Engine,1840. Reproduced with permission 

from Science Museum Archive/Science and Society

Picture Library: SSPL Image 10303657.
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What is the difference between a function and an operation? One can see, in the 

Oxford English Dictionary (OED) that prior to Leibniz, the term “function” was a very 

general term meaning, for example, “official duties” or “the kind of action proper to a 

person as belonging to a particular class.” These are quite general definitions applicable 

to all kinds of work.

After Leibniz, however, according to the OED, a new, more specialized and specifi-

cally mathematical definition is introduced: “A variable quantity regarded in its rela-

tion to one or more other variables in terms of which it may be expressed, … This use 

of the Latin functio is due to Leibniz and his associates.” Thus, the language of labor 

quantified in joules (or joules per kelvin) is part and parcel of the eighteenth-century 

movement in engineering to recast engineering analysis and design into the language 

of Leibniz’s and Newton’s calculus.

Looking to the OED again for the definition of “operation,” we see that it, too, was—

and still is—a general term applicable to the description of all kinds of work: definition 

1.a. is “The exertion of force or influence; working, activity; a manner of working, the 

way in which a thing works.” “Operation” thus contrasts with mathematical “func-

tion.”41 As Antoine Picon emphasizes, “One must observe that although quantification 

and mathematical calculation could be considered as the quintessence of analysis, the 

analytical method [of the Encyclopédie] could very well remain purely qualitative.”42 

In other words, the work language of functions is quantitative; the work language of 

operations can be purely qualitative.

The Work Language of the Encyclopédie Anticipates Computer Programming 

Languages

The Encyclopédie constantly testifies to a tale of matter, but this is also in a certain way a tale of 

“mind”: for the encyclopedist, the trajectory of matter is the progression of reasoning:  the 

images of the plates have a logical function. … Here we find prophetically the very principle 

of cybernetic assemblages; the image of the machine depicted in the plate is in its own way a 

“brain”; in it one can see where matter is input and the organization of a “program.”43

Let us now rush this history forward about a century (this time skipping Turing) 

to 1947, when Herman Goldstine and John von Neumann published Planning and 

Coding for an Electronic Instrument, a text that we might read today as the first-ever com-

puter programming manual. Goldstine and von Neumann were trying to describe 

coding—that is, programming—for a readership that was completely unfamiliar with 

the notion.
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They defined programming as the task of translating mathematical formulas into 

the language of the computer but were not entirely comfortable with the notion that 

it was a form of translation. They seemed to feel that the rewriting of mathematical 

formulas into computer language was much more difficult than translating from one 

language into another. They wrote, “The relation of the coded instruction sequence 

to the mathematically conceived procedure of (numerical) solution is not a statical 

one, that of a translation, but highly dynamical: A coded order stands not simply for 

its present contents at its present location, but more fully for any succession of pas-

sages … through it.”44 In other words, here is yet another difference between these 

operations and mathematical functions: the operations can change their order, their 

number, or their kind as execution of the program proceeds.

The exposition of Goldstine and von Neumann hinges on their development of 

the then-newest graphical means of diagramming a machine: the flow diagram.45 

Software is still frequently designed in a graphical notation that bears a strong resem-

blance to Goldstine and von Neumann’s flow diagrams. (See figure 3.5.) As in theirs, 
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Figure 3.5
This flow chart was modeled on figure 7.2 from Herman Goldstine and John von Neumann, 

Planning and Coding for an Electronic Instrument (1947).
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in contemporary flow diagrams, boxes describe operations and arrows denote the 

sequence in which the operations are to be performed.

There are no people depicted in Babbage’s notations, nor are there any in Golds-

tine and von Neumann’s flow diagrams. When we compare them to the Encyclopédie’s 

engravings, this lack of people is striking.46 Flow diagrams are a picture of work without 

workers. This picture is at the vanishing point of automation, where all workers have 

been ejected from the workshop and replaced by machines.

Something of the work language of operations was lost as it was translated through 

the centuries from Perronet, to Smith, to Prony, to Babbage, and then to von Neumann 

and Goldstine. What was lost in the language was the facility to include people; or, 

more specifically, what was lost in translation was an articulation of the interactions 

between people and between people and machines. As we will see in chapter 4, on 

algorithms, the loss of people was not by accident but rather by design. Babbage and 

then later von Neumann and others were especially keen to get people out of the loop.

Recall Antoine Picon’s discussion of the three main terms of the work language of 

the Encyclopédie: gestures, operations, and processes. When one looks for the materi-

alization of these three terms in contemporary computing, operations and processes 

are easy to see, because they constitute central terms or constructions in most modern 

computer programming languages. To see gestures in software, however, takes more 

effort.

Gesture recognition and gesture-based computing are, nevertheless, foundation-

ally important to today’s mobile platforms and game controllers. Microsoft’s Kinect 

provides game designers with tools for automatically recognizing a large repertoire 

of human gestures and movements using techniques from machine vision.47 Equally 

familiar to any regular user of Apple’s iPhone or similar products are the embedded 

computational techniques deployed in the hardware of touchscreens and accelerom-

eters; with handheld devices, we the users swipe, tap, tilt, and shake the mobile phone 

or tablet computer.48 So, in some sense, gestures are a central construct for today’s inter-

face and user-experience designers.

But there is an apposite site in which gestures can be seen in contemporary comput-

ing: the site of the division of work. People began to disappear from the workshops 

of artisans and designers and then from factories and offices because their jobs had 

become automated. Automating a job entails breaking it down into component parts, 

dividing mental operations and physical gestures into tiny movements until they are 

so small or trivial that they can be performed by a machine. But this act of breaking 

down entails more than the phrase “division of work” communicates.
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Division is, of course, an operation of arithmetic, but dividing work or labor is much 

more complicated than just plain arithmetic. It is not so much a question of finding 

a division of work as it is a matter of finding a grammar of work,49 a grammar that 

includes complexities like doing operations again and again (iteratively or recursively); 

of chaining together sequences of operations—processes—and nesting them into power

ful “black boxes” that have simple inputs and outputs even if they hide very compli-

cated machines inside them; and of articulating together, in network topologies, these 

black boxes so that they mimic the relationships between workers we glimpsed in the 

workshop illustrated in the Encyclopédie.50

Decomposing operations into complex assemblages of smaller operations requires 

more than division; it requires a grammar. Compare division to an ax, and compare 

grammar to a whole toolkit. An ax is a fine tool for splitting wood, but a carpenter 

needs a large array of tools to both cut and join wood in many diverse assemblages. For 

these reasons and others, I will follow a number of other theorists, especially Bernard 

Stiegler, and refer to grammars of work and efforts to distribute work into complex, 

recomposable, and reconfigurable units as efforts of “grammatization.” Grammar and 

grammatization will be more fully explored in chapter 7.
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