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[ will, in what follows, try to maintain the position that there
is nothing wrong with viewing man as an information processor (or
indeed as anything else) nor with attempting to understand
him from that perspective, providing, however, that we never
act as though any single perspective can comprehend the whole
man. See-ing man as an information-processing system does not in
itself de-humanize him, and may very well contribute to his
humanity in that it may lead him to a deeper understanding of one
specific aspect of his human nature. It could, for example, be
enormously important for man’s understanding his spirituality to
know the limits of the explanatory power of an information-
processing theory of man. In order for us to know those limits, the
theory would, of course, have to be worked out in considerable
detail.

Before we discuss what an information-processing theory
of man might look like, I must say more about theories and
especially about their relation to models. A theory is first of all a
text, hence a concatenation of the symbols of some alphabet. But it
is a symbolic construction in a deeper sense as well; the very terms
that a theory employs are symbols which, to paraphrase Abraham
Kaplan, grope for their denotation in the real world or else cease
to be symbolic. * The words “grope for” are Kaplan’s, and are a
happy choice—for to say that symbols “find” their denotation in
the real world would deny, or at least obscure, the fact that the
symbolic terms of a theory can never be finally grounded in reality.



Theories and Models 141

Definitions that define words in terms of other words leave
those other words to be defined. In science generally, symbols are
often defined in terms of operations. In physics, for example, mass
is, informally speaking, that property of an object which determines
its motion during collision with other objects. (If two objects moving
at identical velocities come to rest when brought into head-on colli-
sion, it is said that they have the same mass.) This definition of mass
permits us to design experiments involving certain operations whose
outcomes “measure”’ the mass of objects. Momentum is defined as
the product of the mass of an object and its velocity (mv), accelera-
tion as the rate of change of velocity with time (a = dv/dt), and
finally force as the product of mass and acceleration (f = ma). In a
way it is wrong to say that force is “defined” by the equation f =
ma. A more suitable definition given in some physics texts is that
force is any influence capable of producing a change in the motion
of a body.* The difference between the two senses of “definition”
alluded to here illustrates that so-called operational definitions of a
theory’s terms provide a basis for the design of experiments and the
discovery of general laws, but that these laws may then serve as
implicit definitions of the terms occurring in them. These and still
other problematic aspects of definition imply that all theoretic terms,
hence all theories, must always be characterized by a certain open-
ness. No term of a theory can ever be fully and finally understood.
Indeed, to once more paraphrase Kaplan, it may not be possible to
fix the content of a single concept or term in a sufficiently rich the-
ory (about, say, human cognition) without assessing the truth of the
whole theory.® This fact is of the greatest importance for any assess-
ment of computer models of complex phenomena.

A theory is, of course, not merely any grammatically correct
text that uses a set of terms somehow symbolically related to reality.
It is a systematic aggregate of statements of laws. Its content, its very
value as theory, lies at least as much in the structure of the intercon-
nections that relate its laws to one another, as in the laws them-
selves. (Students sometimes prepare themselves for examinations in
physics by memorizing lists of equations. They may well pass their
examinations with the aid of such feats of memory, but it can hardly
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be said that they know physics, that, in other words, they command
a theory.) A theory, at least a good one, is thus not merely a kind of
data bank in which one can “look up” what would happen under
such and such conditions. It is rather more like a map (an analogy
Kaplan also makes) of a partially explored territory. Its function is
often heuristic, that is, to guide the explorer in further discovery.
The way theories make a difference in the world is thus not that
they answer questions, but that they guide and stimulate intelligent
search. And (again) there is no single “correct’” map of a territory.
An aerial photograph of an area serves a different heuristic function,
say, for a land-use planner, than does a demographic map of the
same area. One use of a theory, then, is that it prepares the concep-
tual categories within which the theoretician and the practitioner
will ask his questions and design his experiments.*

Ordinarily, of course, when we speak of putting a theory to
work, we mean drawing some consequences from it. And by that, in
turn, we mean postulating some set of circumstances that involves
some terms of the theory, and then asking what the theory says
those particular circumstances imply for others of the theory’s terms.
We may describe the state of the economy of a specific country to an
economist, for example, by giving him a set of the sorts of economic
indices his particular economic theory accommodates. He may ask
us some questions. which, he would say, emerge directly from his
theory. Such questions, by the way, might give us more insight into
whether he is, say, a Marxist or a Keynesian economist than any
answers he might ultimately give us, for they would reveal the struc-
ture of his theory, the network of connections between the eco-

* It must not be thought that this heuristic function of theory is manifest only in science. To
name but one of the possible examples outside the sciences, Steven Marcus, the American
literary critic, used theories of literary criticism freshly honed on the stone of psychoanalytic
theory to do an essentially anthropological study of that “foreign, distinct, and exotic”” subcul-
ture that was the sexual subculture of Victorian England. See his The Other Victorians (New
York: Basic Books, 1966). More recently he wrote in the preface of his Engels, Manchester, and
the Working Class (New York: Random House, 1974), “The present work may be regarded as
part of a continuing experiment . . . to ascertain how far literary criticism can help us to
understand history and society; to see how far the intellectual discipline that begins with the
work of close textual analysis can help us understand certain social, historical, or theoretical
documents.” In neither book was a theory of literary criticism “applied,” as, for example, a
chemical theory may be applied to the chemical analysis of a compound; instead, Marcus’
theories were used heuristically, as travelers use maps to explore a strange territory.
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nomic laws in which he believes. Finally, we expect to be told what
his theory says, e.g., that the country will do well, or that there will
be a depression. More technically speaking, we may say that to put
a theory to work means to assign specific values, by no means al-
ways numerical, to some of its parameters (that is, to the entities its
terms signify), and then to methodically determine what values the
theory assigns to other of its parameters. Often, of course, we arrive
at the specifications to which we wish to apply a theory by interro-
gating or measuring some aspect of the real world. The input, so to
speak, to a political theory may, for example, have been derived
from public-opinion polls. At other times our specifications may be
entirely hypothetical, as, for example, when we ask of physics what
effect a long journey near the speed of light would have on the
timekeeping property of a clock. In any case, we identify certain
terms of the theory with what we understand them to denote, asso-
ciate specifications with them, and, in effect, ask the theory to figure
out the consequences.

Of course, a theory cannot “figure out” anything. It is, after
all, merely a text. But we can very often build a model on the basis
of a theory. And there are models which can, in an entirely nontriv-
ial sense, figure things out. Here I am not referring to static scale
models, like those made by architects to show clients what their
finished buildings will look like. Nor do | mean even the scale mod-
els of wings that aerodynamicists subject to tests in wind tunnels;
these are again static. However, the system consisting of both such a
wing and the wind tunnel in which it is flown is a model of the kind
I have in mind. Its crucial property is that it is itself capable of
behaving in a way similar to the behaving system it represents, that
is, a real airfoil moving in a real airmass. The behavior of the wing in
the wind tunnel is presumably determined by the same aerodynamic
laws as govern the behavior of the wings of real airplanes in flight.
The aerodynamicist therefore hopes to learn something about a full-
scale wing by studying its reduced-scale model.

The connection between a model and a theory is that a mod-
el satisfies a theory; that is, a model obeys those laws of behavior
that a corresponding theory explicitly states or which may be de-
rived from it. We may say, given a theory of a system B, that A is a
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model of B if that theory of B is a theory of A as well. We accept the
condition also mentioned by Kaplan that there must be no causal
connection between the model and the thing modelled; for if a mod-
el is to be used as an explanatory tool, then we must always be sure
that any lessons we learn about a modeled entity by studying its
model would still be valid if the model were removed.

People do, of course, derive consequences from theories
without building explicit models like, say, scaled-down wings in
wind tunnels. But that is not to say that they derive such conse-
guences without building models at all. When a psychiatrist applies
psychoanalytic theory to data supplied to him by his patient, he is,
so to speak, exercising a mental model, perhaps a very intuitive one,
of his patient, a model cast in psychoanalytic terms. To state it one
way, the analyst finds the study of his mental model (A) of his
patient (B) useful for understanding his patient (B). To state it an-
other way, the analyst believes that psychoanalytic theory applies to
his patient and therefore constructs a model of him in psychoana-
lytic terms, a model to which, of course, psychoanalytic theory also
applies. He then transforms (translates is perhaps a better word)
inferences derived from working with the model into inferences
about the patient. (It has to be added, lest there be a misunderstand-
ing, that however much the practicing psychoanalyst is committed to
psychoanalytic theory and however much his attitudes are shaped
by it, psychoanalytic therapy consists in only small part of direct or
formal application of theory. Nevertheless, it is plausible that all of
us make all our inferences about reality from mental models whose
structures, and to a large extent whose contents as well, are strongly
determined by our explicitly and implicitly held theories of the
world.)

Computers make possible an entirely new relationship be-
tween theories and models. 1 have already said that theories are
texts. Texts are written in a language. Computer languages are lan-
guages too, and theories may be written in them. Indeed, for the
present purpose we need not restrict our attention to machine lan-
guages or even to the kinds of “higher-level” languages we have
discussed. We may include all languages, specifically also natural
languages, that computers may be able to interpret. The point is
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precisely that computers do (interpret texts given to them, in other
words, that texts determine computers’ behavior. Theories written in
the form of computer programs are ordinary theories as seen from
one point of view. A physicist may, for example, communicate his
theory of the pendulum either as a set of mathematical equations or
as a computer program. In either case he will have to identify the
terms of his theory—his “variables,” in technical jargon—with
whatever they are to correspond to in reality. (He may say I is the
length of the pendulum’s string, p its period of oscillation, g the
acceleration due to gravity, and so on.) But the computer program
has the advantage not only that it may be understood by anyone
suitably trained in its language, just as a mathematical formulation
can be readily understood by a physicist, but that it may also be run
on a computer. Were it to be run with suitable assignments of values
to its terms, the computer would simulate an actual pendulum. And
inferences could be drawn from that simulation, and could be di-
rectly translated into inferences applicable to real pendulums. A the-
ory written in the form of a computer program is thus both a theory
and, when placed on a computer and run, a model to which the
theory applies. Newell and Simon say about their information-pro-
cessing theory of human problemsolving, “the theory performs the
tasks it explains.”¢ Strictly speaking, a theory cannot “perform” any-
thing. But a model can, and therein lies the sense of their statement.
We shall, however, have to return to the troublesome question of
what the performance of a task can and cannot explain.

In order to aid our intuition about what it means for a com-
puter model to “behave,” let us briefly examine an exceedingly sim-
ple model: We know from physics, and indeed it follows from the
equation f = ma that we mentioned earlier, that the distance d an
object will fall in a time ¢ is given by

d = at?/2,

where a is the acceleration due to gravity. In most elementary phys-
ics texts, a is simply asserted to be the earth’s gravitational constant,
namely, 32 ft/sec?, where the unit of distance is feet and that of time
is seconds. The equation itself is a simple mathematical model of a
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falling object. If we assume, for the sake of simplicity, that the accel-
eration a is indeed constant, namely, 32 ft/sec?, we can compute
how far an object will have fallen after, say, 4 seconds: 4 X 4 = 16
and 16 X 32 = 512 and 512 = 2 = 256. The answer, as schoolchil-
dren would say, is therefore 256 feet.

Mathematicians long ago fell into the habit of writing the so-
called variables that appear in their equations as single letters. Per-
haps they did this to guard against writer’s cramp or to save chalk.
Whatever their reasons, their notation is somewhat less than maxi-
mally mnemonic. Because computer programs are often intended to
be read and understood by people, as well as to be executed by
computers, and since computers are, within limits, indifferent to the
lengths of the symbol strings they manipulate, computer program-
mers often use whole words to denote the variables that appear in
their programs. Other considerations make it inconvenient to use
juxtaposition of variables, as in xy, to indicate multiplication. Instead
the symbol “+” is used in many programming languages. Similarly,
“xx”" is used to indicate exponentiation. Thus, where the mathema-
tician writes t2, the programmer writes t+*2. The equation

d = at?/2
when transformed into a program statement* may thus appear as
distance = (acceleration * time *%2)/2.

Let us now complicate our example just a little. Suppose an
object is to be dropped from a stationary platform, say, a helicopter

* A significant technical point must be made here. Although the “statement” shown here is
a transliteration of the equation to which it corresponds, it is not itself an equation. In techni-
cal parlance, it is an “assignment statement.” It assigns a value to the variable “distance.”
“Distance,” in turn, is technically an “identifier,” the name of a storage location in which 1s
stored the value which has been assigned to the corresponding variable. In mathematics, a
variable is an entity whose value is not known, but which has a definite value nonetheless, a
value that can be discovered by solving the equation. In programs, a variable may have
different values at different stages of the execution of the program. In ordinary mathematics,
e.g., in high-school algebra, the “equation” “x = x + 1” is nonsense. The same string of
symbols appearing as an expression in a program has meaning, namely, that 1 1s to be added
to the contents of the location denoted by “x” and those contents replaced by the resulting
sum.



Theories and Models 147

hovering at some altitude above the ground. The object’s height
above the ground after it has fallen for some time would then be
given by

height = altitude — (acceleration » time ** 2)/2.

Finally, suppose that the helicopter is flying forward at some con-
stant velocity while maintaining its altitude. If there were no aerody-
namic effects on the object dropped from the helicopter, it would
remain exactly below the helicopter during its entire journey to the
ground. The object’s horizontal displacement from the point over
which it was dropped would therefore be the same as the helicop-
ter’s horizontal displacement from that point, that is,

displacement = velocity * time,

where by “velocity” we here, of course, mean the helicopter’s veloc-
ity.

We now have, from one point of view, two equations, from
another point of view, two program statements, from which we can
compute the horizontal and vertical coordinates of an object dropped
from a moving helicopter. We can combine them and imbed them in
a small fragment of a computer program, as follows:

FOR time = 0 STEP .001 UNTIL height = 0 DO;
height = altitude — (acceleration * time=*»2) / 2 ;
displacement = velocity * time ;
display (height, displacement) ;

END.

This is an example of a so-called iteration statement. It tells the
computer to do a certain thing until some condition is achieved. In
this case, it tells the computer to first set the variable “time” to zero,
then to compute the height and displacement of what we would
interpret to be the falling object, then to display the coordinates so
computed—I shall say more about displaying in a moment—and, if
the computed height is not zero, to add .001 to the variable “time”
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and do the whole thing again, that is, to iterate the process. (This
program contains an error which, for the sake of simplicity, I have
let stand. As it is, it may run forever. To repair it, the expression
“height = 0” should be replaced by “height < 0.” The reason for
this is left to the reader to discover.)

We have assumed here that the computer on which this pro-
gram is to run has a built-in display apparatus and the correspond-
ing display instruction. We may imagine the computer’s display to
be a cathode-ray tube like that of an ordinary television set. The
display instruction delivers two numbers to this device, in this exam-
ple, the values of height and displacement. The display causes a
point of light to appear on its screen at the place whose coordinates
are determined by these two numbers, i.e., so many inches up and
so many inches to the right of some fixed point of origin.

If we now make some additional assumptions about for ex-
ample, the persistence of the lighted dot on the screen and the over-
all timing of the whole affair, we can imagine that the moving dot we
see will appear to us like a film of the object falling from the helicop-
ter (see Figure 5.1). It is thus possible, even compelling, to think of
the computer “behaving,” and for us to interpret its behavior as
modeling that of the falling object.

It would be very easy for us to complicate our example step
by step, first, for example, by extending it to cover the trajectory of
a missile fired from a gun and, with that as a base, to extend it to the
flight of orbiting satellites. We would then have described at least

Figure 5.1.

Cathode simulation of the
trajectory of an object
dropped from a flying
helicopter.

Ground level
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the most fundamental basis on which the orbital simulations we
often see on television are developed. But that is not my purpose.
Simple as our example is, we can learn pertinent lessons from it.

To actually use the model, an investigator would initialize it
by assigning values to the parameters altitude and velocity, run it on
an appropriate computer, and observe its behavior on the comput-
er’s display device. There would, however, be discrepancies between
what the model, so to speak, says a falling object would do and the
behavior of its real counterpart. The model, for example, makes the
implicit assumption that there are no aerodynamic effects on the
falling object. But we know that there would certainly be air resist-
ance in the real situation. Indeed, if the object dropped were a para-
chute, its passenger’s life would depend on air resistance slowing its
fall. A model is always a simplification, a kind of idealization of what
it is intended to model.

The aim of a model is, of course, precisely not to reproduce
reality in all its complexity. It is rather to capture in a vivid, often
formal, way what is essential to understanding some aspect of its
structure or behavior. The word “essential” as used in the above
sentence is enormously significant, not to say problematical. It im-
plies, first of all, purpose. In our example, we seek to understand
how the object falls, and not, say, how it reflects sunlight in its
descent or how deep a hole it would dig on impact if dropped from
such and such a height. Were we interested in the latter, we would
have to concern ourselves with the object’s weight, its terminal ve-
locity, and so on. We select, for inclusion in our model, those fea-
tures of reality that we consider to be essential to our purpose. In
complex situations like, say, modeling the growth, decay, and possi-
ble regeneration of a city, the very act of choosing what is essential
and what is not must be at least in part an act of judgment, often
political and cultural judgment. And that act must then necessarily
be based on the modeler’s intuitive mental model. Testing a model
may reveal that something essential was left out of it. But again,
judgment must be exercised to decide what the something might be,
and whether it is “essential” for the purpose the model is intended
to serve. The ultimate criteria, being based on intentions and pur-
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poses as they must be, are finally determined by the individual, that
is, human, modeler.

The problem associated with the question of what is and
what is not “essential” cuts the other way as well. A model is, after
all, a different object from what it models. It therefore has properties
not shared by its counterpart. The explorers we mentioned earlier
may have built a functional model of the computer they found by
using light-carrying fibers and light valves, whereas the real com-
puter used wires and the kind of electronic gates we considered in
Chapter IIl. They could then easily have come to believe that light is
essential to the operation of computers. Their computer science
might have included large elements of physical optics, and so on. It
is indeed possible to build computers using light-carrying fibers, etc.
Their logical diagrams, that is, their paper designs, would, up to a
point, be indistinguishable from those of the corresponding elec-
tronic computers, because the former would have the same structure
as the latter. What is essential about a computer is the organization
of its components and not, again up to a point, precisely what those
components are made of. Another example: there are people who
believe it possible to build a computer model of the human brain on
the neurological level. Such a model would, of course, be in principle
describable in strictly mathematical terms. This might lead some
people to believe that the language our nervous system uses must be
the language of our mathematics. Such a belief would be an error of
the kind we mean. John von Neumann, the great computer pioneer,
touched briefly on this point himself:

“When we talk mathematics, we may be discussing a secondary
language, built on the primary language truly used by the central
nervous system. Thus the outward forms of our mathematics are
not absolutely relevant from the point of view of evaluating what
the mathematical or logical language truly used by the central ner-
vous system is.”’”

One function of a model is to test theories at their extreme
limits. [ have already mentioned that computers can generate films
that model the behavior of a particle at extreme limits of relativistic
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velocities. Our own simple model of falling objects could be used in
its present form to simulate, hence to calculate, the fall of an object
from a spaceship flying near the surface of the moon. All we would
have to do is to initialize acceleration to the number appropriate for
the gravity existing on the moon’s surface (providing, of course, that
the spaceship is not so high above the surface of the moon that the
effect of the moon’s gravitational field would have been significantly
changed—another implicit assumption). For that simulation exercise
we would not have to have any components in our model corre-
sponding to air resistance or other aerodynamic effects: the moon
has no atmosphere. (Recall that an astronaut simultaneously
dropped a feather and a hammer onto the moon’s surface and that
they both reached the ground at the same time.)

It is a fact, however, that the moon’s gravitational field varies
from place to place. These variations are thought to be due to so-
called masscons, that is, concentrations of mass within the moon
that act somewhat like huge magnets irregularly buried deep within
the moon. The masscon hypothesis was advanced to account for
observed irregularities in the trajectories of spacecraft orbiting the
moon. It is, in effect, an elaboration of the falling-body model we
have discussed. The elaborated model is the result of substituting a
complex mathematical function (in other words, a subroutine) for
the single term “acceleration” of our simple model. I mention it to
illustrate the process, in this case properly applied, of elaborating a
model to account for new and unanticipated observations. But the
masscon elaboration was not the only possible extension of either
the theory or its computer model. It could have been hypothesized,
for example, that the moon is surrounded by a turbulent ether man-
tle whose waves and eddies caused the spaceship’s irregular behav-
ior. There are dozens of very good reasons for rejecting this hypoth-
esis, of course, but a good programmer, given a lot of data, could
more or less easily elaborate the model with which we started by
adding “ether turbulence subroutines” so that, in the end, the model
behaved just as the spaceship was observed to behave. Such a model
would, of course, no longer look simple. Indeed, its very complexity,
plus the precision to which it carried its calculations, might lend it a
certain credibility.
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Earlier I said that the value of a theory lies not so much in
the aggregation of the laws it states as in the structure that intercon-
nects them. The trouble with the kind of model elaboration that
would result from such an “ether turbulence” hypothesis is that it
simply patches one more “explanation” onto an already existing
structure. It is a patch in that it has no roots in anything already
present in the structure. Computer models have, as we have seen,
some advantages over theories stated in natural language. But the
latter have the advantage that patching is hard to conceal. If a theory
written in natural language is, in fact, a set of patches and patches on
patches, its lack of structure will be evident in its very composition.
Although a computer program similarly constructed may reveal its
impoverished structure to a trained reader, this kind of fault cannot
be so easily seen in the program’s performance. A program’s per-
formance, therefore, does not alone constitute an adequate valida-
tion of it as theory.

[ have already alluded to the heuristic function of theories.
Since models in computer-program form are also theories (at least,
some programs deserve to be so thought of), what I have said about
theories in general also applies to them, perhaps even more strongly,
in this sense: in order for us to draw consequences from discursive
theories, even to determine their coherence and consistency, they
must, as | have said, be modeled anyway, that is, be modeled in the
mind. The very eloquence of their statements, especially in the eyes
of their authors, may give them a persuasive power they hardly
deserve. Besides, much time may elapse between the formulation of
a theory and its testing in the minds of men. Computer programs
tend to reveal their errors, especially their lack of consistency,
quickly and sharply. And, in skilled hands, computer modeling pro-
vides a quick feedback that can have a truly therapeutic effect pre-
cisely because of its immediacy. Computer modeling is thus some-
what like Polaroid photography: it is hard to maintain the belief that
one has taken a great photograph when the counterexample is in
one’s hands. As Patrick Suppes remarked,

The attempt to characterize exactly models of an empirical the-
ory almost inevitably yields a more precise and clearer understand-
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ing of the exact character of a theory. The emptiness and shallow-
ness of many classical theories in the social sciences is well brought
out by the attempt to formulate in any exact fashion what consi-
tutes a model of the theory. The kind of theory which mainly
consists of insightful remarks and heuristic slogans will not be
amenable to this treatment. The effort to make it exact will at the
same time reveal the weakness of the theory.”8

The question is, of course, just what kinds of theories are “amenable
to this treatment?”





