
The role of aesthetics in the

understandings of source code

Pierre Depaz

under the direction of

Alexandre Gefen (Paris-3)

and Nick Montfort (MIT)

ED120 - THALIM

last updated: 2023-08-02

Abstract

This thesis investigates how the aesthetic properties of source code en-

able the representation of programmed semantic spaces, in relation with

the function andunderstanding of computer processes. By examining pro-

gram texts and the discourses around it, we highlight how source code

aesthetics are both dependent on the context in which they are written,

and contingent to other literary, architectural, and scientific aesthetics,

depending on different scales of reading. Particularly, we show how the

aesthetic properties of source codemanifest expressive power due to their

existence as a dynamic, functional and shared computational interface to

the world.

Contents

1 Introduction 5

1.1 Context . 7

1.1.1 The research territory: code 7

1.1.2 Beautiful code . 12

1.1.3 Literature review . 18

1.2 The aesthetic specificities of source code 34

1.2.1 What does source code have to say about itself? 36

1.2.2 How does source code relate to other aesthetic fields? 37

1.2.3 Howdo the aesthetics of source code relate to its func-

tionality? . 37

1.3 Methodology . 38

1.4 Roadmap . 42

1.5 Implications and readership . 45

2 Aesthetic ideals in programming practices 47

2.1 The practices of programmers . 48

2.1.1 Software developers . 49

2.1.2 Hackers . 65

2.1.3 Scientists . 80

2.1.4 Poets . 94

2.2 Ideals of beauty . 108

2.2.1 Introduction to the Methodology 108

1

2.2.2 Lexical Field in Programmer Discourse 112

2.3 Aesthetic domains . 130

2.3.1 Literary Beauty . 131

2.3.2 Scientific beauty . 142

2.3.3 Architectural beauty . 147

3 Understanding source code 160

3.1 Formal and contextual understandings 162

3.1.1 Between formal and informal 163

3.1.2 Knowing-what and knowing-how 171

3.2 Understanding computation . 180

3.2.1 Software ontology . 180

3.2.2 Software complexity . 188

3.2.3 The psychology of programming 199

3.3 Means of understanding . 206

3.3.1 Metaphors in computation 207

3.3.2 Tools as a cognitive extension 217

4 Beauty and understanding 228

4.1 Aesthetics and cognition . 229

4.1.1 Source code as a language of art 230

4.1.2 Contemporary approaches to art and cognition 240

4.2 Literature and understanding . 245

4.2.1 Literary metaphors . 245

4.2.2 Literature and cognitive structures 250

4.2.3 Words in space . 256

4.3 Architecture and understanding 266

4.3.1 Form and Function . 267

4.3.2 Patterns and structures . 273

4.3.3 Material knowledge . 289

4.4 Forms of scientific activity . 294

2

4.4.1 Beauty in mathematics . 295

4.4.2 Epistemic value of aesthetics 301

4.4.3 Aesthetics as heuristics . 309

5 Machine languages 316

5.1 Linguistic interfaces . 317

5.1.1 Programming languages 318

5.1.2 Qualities of programming languages 327

5.1.3 Styles and idioms in programming 342

5.2 Spatial aesthetics in program texts 349

5.2.1 Matters of scale . 349

5.2.2 Semantic layers . 363

5.2.3 Between humans and machines 374

5.3 Contexts of functions . 376

5.3.1 Definitions of function . 377

5.3.2 Functions of source code 381

5.3.3 Function in aesthetics . 386

6 Conclusion 392

6.1 Findings . 393

6.1.1 What does source code have to say about itself? 394

6.1.2 How does source code relate to other aesthetic fields? 398

6.1.3 Howdo the aesthetics of source code relate to its func-

tionality? . 404

6.2 Contribution . 405

6.2.1 Limitations . 409

6.3 Opening . 410

3

To me, programming is more than an

important practical art.

It is also a gigantic undertaking in the

foundations of knowledge.

Grace Hopper

4

Chapter 1

Introduction

This thesis is an inquiry into the formalmanifestations of source code, into

how particular configurations of lines of code allow for aesthetic judg-

ments and on the functions that such configurations fulfill with regards

to understanding. This inquiry will lead us to consider the different ways

in which source code can be represented, depending on what it aims at

accomplishing, and on the contexts in which it operates. This study on

source code involves the different groups of people which read and write

it, the purposes for which they write it, the programming languages they

use to write it, and the natural language they use to speak about it. Most

importantly, this thesis focuses on source code as a material and linguis-

tic manifestation of a larger digital ecosystem of software and hardware

to which it belongs. Since source code is only one component of software,

this thesis focuses on studying the reality of written code, along with its

conceptual interpretations.

Starting from concrete instances of source code, this thesis will aim at

assessing what programmers have to say about it, and attempt to identify

howone ormore specific aesthetic fields are used to refer to it. This aimde-

pends on two facts: first, that source code is amedium for expression, both

to express the programmer’s intent to the computer (Dijkstra, 1982) and

5

the programmer’s intent to another programmer (Abelson et al., 1979)—

throughout this study, we also consider the same individual at two differ-

ent points in time as two different programmers. Second, source code is a

relatively new medium, compared to, say, paint, clay or natural language.

As such, the development and solidification of aesthetic practices—that is,

of ways of doing which focus on the presentation on an artefact at least as

much as on its function—is an ongoing research project in computer sci-

ence, software development and the digital humanities (see our literature

review in 1.1.3). Formal judgments of source code are therefore existing and

well-documented, and are related to a need for expressiveness, as we will

see in chapter 2, but their formalization is still an ongoing process.

Source code can thus be written in a way that makes it subject to aes-

thetic judgments by programmers; that is, code has aesthetics, but it is un-

clear exactly which aesthetics. Indeed, these aesthetic judgments as they

exist today rely on different aesthetic domains to assess source code, as

a means to grasp the artefact that is software. These draw on metaphors

ranging from literature, architecture, mathematics and engineering. And

yet, source code, while related to all of these, isn’t exactly any of them.

Like the story of the seven blind men and the elephant (Chun, 2008), each

of these domains touch on some specific aspect of the nature of code, but

none of them are sufficient to entirely provide a solid basis for the aes-

thetic judgments of source code. It is at the crossroads of these domains

that this thesis situates itself.

The examination of source code, and of the discourses around source

code will integrate both the variety of ways in which source code can ex-

ist, and the invariant aspects which underline all diverse approaches of

source code. Particularly, wewill see howeach groups of practitioners tend

to deploy references to conceptual metaphors drawing from the domains

above, but also how these references overlap across groups. The point of

overlap, as we will demontrate, is that of using a formal linguistic system

to communicate the understanding of complex cognitive structures, at the

6

interface of the computational and of the natural. Through an interdisci-

plinary approach, we will attempt to connect this formal symbol system

to the broader role of aesthetics as a cognitive mechanism to deal with

complexity.

The rest of this introduction will consist in establishing a more com-

plete viewof the context inwhich this research takes place, fromcomputer

science to digital humanities and science and technology studies. With

this context at hand, we will proceed to highlight the specific problems

which will be tackled regarding the current place of aesthetics in source

code. After outlining our methodology and the theoretical frameworks

which will be mobilized throughout this study, we will sketch out how the

different chapters of this thesis will attempt at providing some responses

to our research questions.

1.1 Context

1.1.1 The research territory: code

Most of our modern infrastructure depends, to a more or less dramatic ex-

tent, on software systems (Kitchin &Dodge, 2011), from commercial spaces

to classrooms, transport systems to cultural institutions, scientific produc-

tion and entertainment products. Software regulates and automates the

storage, communication and creation of information which support each

of these domains of human activities. These complex processes are de-

scribed in source code, a vast and mostly invisible set of texts. The num-

ber of lines of code involved in supporting human activity is hard to esti-

mate; one can only rely on disclosures from companies, and publicly avail-

able repositories. To give an order of magnitude, all of Google’s services

amounted to over two billions source lines of code (SLOC) (@Scale, 2015),

while the 2005 release of the OSX operating system comprised 86 millions

lines of code, and while the version 1.0 of the Linux kernel (an operating

7

a = 4
b = 6

def compute(first, second):
return (first * 2) + second

compute(a, b)

Listing 1: Example of the basic elements of a computer program, written in

Python

system which powers most of the internet and specialized computation)

totalled over 175,000 SLOC, version 4.1 jumped to over 19.5 million lines of

code in the span of twenty years (Wikipedia, 2021).

Given such a large quantity of textual mass, one might wonder: who

reads this code? To answer this question, we must start looking more

closely at what source code really is.

Source code consists in a series of instructions, composed in a particu-

lar programming language, which is then processed by a computer in order

to be executed, often resulting inmechanical action (e.g. a change inmove-

ment, display or sound). For instance, using the language called Python,

the source code in 1 consists in telling the computer to store two numbers

in what are called variables (here, a and b), then proceeds with describing

the procedure for adding the double of the first terms to the second term

(here, compute), and concludes in actually executing the above procedure.

Given this particular piece of source code, the computer will output the

number 14 as the result of the operation (4 * 2)+ 6. In this sense, then,

source code is the requirement for software to exist: since computers are

procedural machines, acting upon themselves and upon the world, they

need a specification of what to do, and source code provides such a speci-

fication. In this sense, computers are themain ”readership” of source code.

However, it is also aby-product of software, since it is no longer required

once the computer hasprocessed and stored it into abinary representation,

8

a series of 0s and 1s which symbolize the successive states that the com-

puter has to go through in order to perform the action that was described

in the source code. Binary code is what most of the individuals who inter-

act with computers deal with, in the form of packaged applications, such

as a media player or a web browser. They (almost) never have to inquire

about the existence or appearance of such source code. In this sense, then,

source code only matters until it gets processed by a computer, through

which it realizes its intended function.

From another perspective, source code isn’t just about telling comput-

ers what to do, but also a key component of a particular economy: that

of software development. Programmers are the ones who write the source

code and this process is first and foremost a collaborative endeavour. They

write code in successive steps, because they add features over time, or they

fix errors that have shown up in their software, or they decide to rewrite

parts of the source code based on new ideas, requirements, skills or pref-

erences. In this case, source code is not used to communicate to the com-

puter what it does, but to other software developers what the intent of the

software is. Source code is then the locus of human, collaborative work; it

represents iterations of ideas, formalization of processes and approaches

to problem-solving. As Harold Abelson puts it,

”Programs must be written for people to read, and only inciden-

tally for machines to execute.” (Abelson et al., 1979).

Official definitions of source code straddle this line between the first

role of source code (as instructions to a computer) and the second role of

source code (as indications to a programmer). For instance, a definition

within the context of the Institute of Electrical andElectronics Engineering

(IEEE) considers source code any fully executable description of a software

system, which therefore includes various representations of this description,

from machine code to high-level languages and graphical representations

using visual programming languages (Harman, 2010). This definition fo-

9

cuses on the ability of code to be processed by a machine, and mentions

little about its readability (i.e. processability by other humans).

On the other hand, the definition of source code provided by the Linux

Information Project focuses on source code as the version of software as it

is originally written (i.e. typed into a computer), by a human in plain text (i.e.

human-readable, alphanumeric characters). (Linux Information Project,

2006). The emphasis here is on source code as the support of human ac-

tivity, as software developers need to understand the pieces of code that

they are creating, or modifying. Source code thus has two kinds of read-

abilities: a computer one, which is geared towards the correct execution

of the program, and a human one, which is geared towards the correct un-

derstanding of the program. In the lineage of this human-readability, we

can point to the Free Software Foundation’s equation of the free circula-

tion and publication of source codewith the free circulation of publication

of ideas. Particularly, Freedom 1 (The freedom to study how the program

works, and adapt it to your needs) and Freedom 2 (The freedom to improve

the program, and release your improvements to the public, so that the whole

community benefits.) as stated in the FSF’s definition of Free Software stip-

ulates that access to source code is required to support these freedoms, a

version of source code that is not concealed, i.e. readable by both human

and machine (Stallman & Free Software Foundation , Cambridge(2002).

In addition to this ability to communicate the ideas latent in it, source

code, as an always potentially collaborative object, can be the locus ofmul-

tiple subjectivities coming together. As Krysa and Sedek state in their def-

inition, source code is where change and influence can happen, and where

intentionality and style are expressed (Fuller, 2008). In their understand-

ing, source code shares some features with natural languages as an inter-

subjective process (Voloshinov & Bachtin, 1986), and as such is different

from the binary representation of a program, an object which we do not

consider fitting to the frame of our study due to its unilaterality—among

computers and humans, only humans can effectively read it. The intelligi-

10

bility of source code, they continue, facilitates its circulation and duplica-

tion among programmers. It is this aspect of a socio-technical object that

we consider as important as its procedural effectiveness.

In this research, we build on these definitions to propose the following:

Source code is defined as one or more text files which are written

by a human or by amachine in such away that they elicit amean-

ingful and succesfully actionable response from both a computer

and a human, and describe a software system. These text files

are the starting point to produce an execution of the system de-

scribed, whether the very first starting point, or an intermediate

representation used for subsequent compilations. These files are

collectively called program texts.

This definition takes into account a broad view of source code, includ-

ing steps such as intermediate representations (transitory representations

from one version of the source to another one), but also obfuscations (de-

liberately complicating the code to prevent human-readabilitywhilemain-

taining machine-readability) and minifications (reducing the amount of

characters used in source code to its minimum). This will allow us to com-

pare human-authorship of source code, machine-authorship, and hybrid

modes, in which a human writes unreadable code with the help of tools.

One aspect that is being more narrowly defined for the purpose of this

study is the actual manifestation of code: while multiple media for source

code exist, we exclude here all of those that are not written in the UTF-8

character set—i.e. textual representations. Since one of the questions of

this study is to examine the literariness of source code aesthetics, other

forms of source code, such as visual programming languages or biological

computation, stand outside the scope of this study and should be investi-

gated in subsequent work. Similarly, the recent development of large lan-

guage models in deep learning have ushered a new kind of source: a well-

formed statistical representation of source code, aggregated from various

11

sources into an answer to a specific problems. While these do pose inter-

esting questions in terms of intentionality and style, we nonetheless also

reserve this kind of source code to a subsequent study.

As for the term program text, it is chosen in order to highlight the dual

nature of source code: that of a computational artefact to be formally

processed and unambiguously understood (Detienne, 2001), and that of a

open-ended, multi-layered document, in the vein of Barthes’ distinction

between a text and a work (Barthes, 1984). We will refer to the general

medium of a textual interface to computation as source code, and to the

coherent, practical instance of software manifested through source code

as program texts.

1.1.2 Beautiful code

From this definition of source code textually represented, we now turn to

the existence of the aesthetics of such program texts. To contextualize

this existence, we first need to touch upon the history and practice of soft-

ware development. As an economic activity, software development came

from a bottom-up dynamic, a de facto activity which was not expected in

the early days of computing, where most of the work was divided between

mathematics and engineering. Its earliest manifestation can be found in

the physical rewiring process of mainframes in order to perform a specific

computation, something more akin to firmware than to software. These

rewiring tasks were done by mostly female assistants, under the direction

of mostly male mathematicians (Chun, 2005), and consisted in translation

tasks from thought tomachine, andwhich requiredmoremechanical than

notational skill. The recognition of software engineering as its own field

came as its unique domain of expertise was required in larger engineer-

ing projects—for instance, the term software engineeringwas coined in the

late 1960s byMargaret Hamilton and her team as theywereworking on the

Apollo 11 Lunar Module software (Mindell, 2011). In the same decade, the

12

first volume of The Art of Computer Programming, by Donald Knuth, ad-

dresses directly both the existence of programming as an activity separate

frommathematics and engineering, as well as an activity with an ”artistic”

dimension.

The process of preparing programs for a digital computer is es-

pecially attractive, not only because it can be economically and

scientifically rewarding, but also because it can be an aesthetic

experiencemuch like composing poetry ormusic. This book is the

first volumeof amulti-volume set of books that has beendesigned

to train the reader in the various skills that go intoaprogrammer’s

craft. (Knuth, 1997)

Considered one of the most canonical textbooks in the field, The Art of

Computer Programminghighlights two important aspects of programming

for our purpose: that it can be an aesthetic experience and that it is the

result of a craft, rather than of a highly-formalized systematic process, as

we will see in 2.3.3.

Craftsmanship is an essentially fleeting phenomenon, a practice rather

than a theory, in the vein ofMichel De Certeau’s tactics, bottom-up actions

informally designed and implemented by the users of a situation, product

or technology as opposed to strategies (de Certeau et al., 1990), in which

ways of doing are deliberately prescribed in a top-down fashion. Craft

is hard to formalize, and the development of expertise in the field hap-

pensmore often through practice thanthrough formal education (Sennett,

2009). It is also one in which function and beauty exist in an intricate, em-

bodied and implicit relationship, based on subjective qualitative standards

and functional purposes rather than strictly quantitative measurements

(Pye, 2008). Approaching programming as a craft has been a recurrent

perspective (Lévy, 1992; Dijkstra, 1982), and connects to the multiple tes-

timonies of encountering beautiful code, some of which have made their

ways into edited volumes or monographs (Oram &Wilson, 2007; Chandra,

13

2014; Gabriel, 1998).

Additionally, informal exchanges among programmers on forums,

mailing lists, blog posts and code repositories often mention beautiful

code, either as a central discussion point or simply in passing. These tes-

timonies constitute the first part of our corpus, as sources in which pro-

grammers comment on the aesthetic dimension of their practice. The sec-

ond part of the corpus is composed of selected program texts, which we

will examine in order to identify and formalize which aspects of the tex-

tual manifestation of software can elicit an aesthetic experience.

So the existenceof something akin to art, somethingbeautiful andplea-

surable emerging from the reading and writing of source code has been

acknowledged since the 1960s, in the early days of programming as a self-

contained discipline, and is still discussed today. However, the formaliza-

tion of an aesthetics of source code first requires a working definition of

the concept of aesthetics as used in this study.

There is a longhistory of aesthetic philosphical inquiries in theWestern

tradition, from beauty as the imitation of nature, moral purification, dis-

interested appreciation, cognitive perfection, or sensible representations

with emotional repercussions. The common point of these definitions is

that of sensual manifestation, that is the set of visible forms which can

enable an aesthetic experience, a cognitive state of pleasure relying on,

amongst others, an object, a sense of unity and of discovery (Beardsley,

1970).

The definition of aesthetics that we will use in this thesis starts from

this requirement of sense perception, and then builds upon it using two

theoretical frameworks: Nelson Goodman’s theory of symbols (Good-

man, 1976) and Gérard Genette’s distinction between fiction and diction

(Genette, 1993). The former provides us with an analysis of formal systems

in aesthetic manifestations and their role in a cognitive process, while the

second offers a broadened perspective on what qualifies as textual arts, or

literature.

14

Goodman’s view on aesthetics is an essentially communicative one: we

use aesthetics to carry acrossmore or less complex concepts. This commu-

nication process happens through various symbol systems (e.g. pictural

systems, linguistic systems, musical systems, choreographic systems), the

nature and organization of which can elicit an aesthetic experience. His

conception of such an aesthetic experience isn’t one of self-referential

composition, or of purely emotional pleasure, but a cognitive one, one

which belongs to the field of epistemology (Goodman, 1976). The symbol

systems involved in the aesthetic judgment bear different kinds of rela-

tions to the worlds they refer to—such as denoting, representing, ressem-

bling, exemplifying— and their purpose is to communicate a truth about

these worlds (Goodman, 1978). In Goodman’s view, the arts and the sci-

ences are, in the end, two sides of the same coin. They aim at provid-

ing conceptual clarity through formal, systematic means, and the arts—

understood here in the broad, Renaissance sense of liberal arts—can and

should be, according to him, approached with the same rigor as the sci-

ences. In our case, programming, with its self-proclaimed craft-like status

and its mathematical roots, stands equally across the arts and sciences.

Goodman’s use of the term languages implies a broader set of linguistic

systems than that of strictly verbal ones. This approach will support our

initial conception of programming languages as verbal systems, but will

allow us not to remain constrained by traditional literary aesthetics such

as verse, rhyme or alliteration. To what extent is programming a linguistic

activity is going to be one of the main inquiries of this thesis, and Good-

man’s extended, yet rigorous definition leaves us room to explore the se-

mantic and syntactic dimension of source code as one of those languages

of art.

With this analytical framework allowing us to analyze the matter at

hand—program texts composed by a symbol system with an epistemic

purpose—we turn to a more literary perspective on aesthetics. Genette’s

approach to literature, which he calls the art of language, results in the es-

15

tablishment of two dichotomies: fiction/diction, and constitutivity/condi-

tionality. In Fiction and Diction (Genette, 1993), he extends previous con-

ceptions of literature and poetics, from Aristotle to Jakobson, in order to

broaden the scope of what can be considered literature, by questioning

the conditions under which a text is given a literary status. As such, he

establishes the existence of conditional literature alongside constitutive

literature: the former gains its status of a literary text from the individual,

subjective aesthetic judgment bestowed upon it, while the latter relies on

pre-exisiting structures, themes and genres. Focusing on conditionality,

this approach paves the way for an extension of the domain of literature

(Gefen & Perez, 2019), and a more subtle understanding of the aesthetic

manifestation in an array of textual works.

Genette also makes the distinction between fiction, with the focus be-

ing the potentiality of a text’s object, its imaginative qualities and themes,

and diction, with an emphasis on the formal characteristics of the text.

Since code holds two existences, one as executed, and one aswritten, I pro-

pose to map Genette’s concept of fiction on to source code when the latter

is considered as a purely functional text—i.e. what the source code ulti-

mately does in its domain of application, through its execution. Because

source code always holds software as a potential within itsmarkings, wait-

ing to be actualized through execution, one has to imagine what this code

actually does. Written source code, then, could either be judged primarily

on its fiction or on its diction—on what it does, or on how it does it. Since

we focus on the written form of source code, and not on the type of its

purpose, an attention to dictionwill be the entry point of this thesis.

A first approach to source code could be constitutive, inGenette’s terms:

a given program text could be considered aesthetically pleasing because

the software it generates abides by some normative definitions of being

aesthetically pleasing, or because the software itself is considered a piece

of art in the socio-economic sense, shown in exhibitions and sold in gal-

leries. However, our empirical approach to source code aesthetics, by ex-

16

amining various program texts directly, and our inquiry into the possibil-

ity of multiple aesthetic fields co-existing within source code as a symbol

system, asks us to forgo this constitutive definition of an aesthetic work

as normative categories within software development. Our focus on sense

perception thus starts froma conditional approach, inwhichprogrammers

emit an aesthetic judgment on a program text, with an emphasis first on

what the source code is, and only secondly on what it does1. This condi-

tional approach implies that we use a conception of the aesthetic that is

broader than the artistic and the beautiful, encompassing less dramatic

qualifiers, such as good or nice, and reaching into the domain of everyday

aesthetics (Saito, 2012).

Diction, then, focuses on the formal characteristics of the text. The

point here is not to assume an autotelic mode of existence for source

code with no external reference, but rather to acknowledge that there is

a certain difference between the content of software and the form of its

source—aesthetically pleasing source code does not guarantee great soft-

ware. This thesis chooses to focus on the formal aspects of code such as

not to restrict ourselves to any specific kind, or genre, of program texts,

leaving open the possibility for these categories to emerge after our anal-

ysis.

So, following Genette’s re-asking of the Goodman’s question ofWhen is

art? rather than the historicalWhat is art?, we can now proceed with our

understandingof aesthetics asa set of physicalmanifestationswhich canbe

grasped by the senses, akin to ”the movement of a light, the brush a fabric,

the splash of a color” (Ranciere, 2013), which aim at enabling a cognitive,

communicative purpose, andwhich are not exclusively constituted by pre-

existing categories. Such physical manifestations can, in turn, support an

evaluative appraisal of their objects of the concern, enabling an aesthetic

judgment.

1As we have seen with Goodman, there is nonetheless a tight connection between those

to states.

17

We also distinguish the aesthetic from the beautiful. The latter implies

an emotional response and us required closely tied to the artistic status

of an artefact, we instead focus on the positive properties in everyday en-

counters, rather than in an art-historical context.

This overview of the theoretical frameworks of this thesis is already

implicitly setting the boundaries of this study. The domain we are inves-

tigating here is one that is delimited by both medium and purpose. First,

the medium limitations is that of text, in its material sense, as mentioned

above in our definition of source code. Second, the purpose limitation

is that of computable code, rather than computed code: we are examin-

ing latent programs, with their reality as texts and their virtuality as ac-

tions, rather than the other way around. Executed software and its set of

digital affordances (e.g. graphical user interfaces (Gelernter, 1998), real-

time interactivity (Laurel, 1993) and process-intensive developments (Mur-

ray, 1998)) differ from the literary and architectural ones that software,

in its written form, is claimed to exhibit. However, executable and exe-

cuted software, being two sides of the same coin, might suggest causal

relationships—e.g. the aesthetics of source code affecting the aesthetics

of software—but we reserve such an inquiry for a subsequent study.

Now thatwe have explicited our object of study—the formalmanifesta-

tions of software under its textual form—we can turn to a review of the re-

search that has alredy been done on the subject, before highlighting some

of the current limitations.

1.1.3 Literature review

A literature review on this topic must address the dualistic nature of stud-

ies on source code, as research can be distinguished between the fields of

computer science and engineering on one side, and that of the humanities

on the other. This overviewwill provide us with a better sense of which as-

pects of code and aesthetics have been explored until now, and will invite

18

void leftpad(int i)
{

char* c;
if (i == 0)

c = '00';
if (i == 1)

c = '01';
if (i == 2)

c = '02';
if (i == 3)

c = '03';
if (i == 4)

c = '04';
if (i == 5)

c = '05';
if (i == 6)

c = '06';
if (i == 7)

c = '07';
if (i == 8)

c = '08';
if (i == 9)

c = '09';
}

Listing 2: A very verbose way to left pad a digit with zeroes in the C lan-

guage.

us to address the remaining gaps.

We have seen that most technical literature, starting from The Art of

Computer Programming, acknowledges the role that aesthetics have toplay

in the writing and reading of program texts. Along with the positions of

Knuth and Dijkstra regarding the importance of paying attention to the

aspects of programming practice (Dijkstra, 1972) which go beyond strictly

mathematical and engineering requirements, Kerninghan and Plauer pub-

lish in 1978 their Elements of Programming Style (Kernighan & Plauger,

1978). In it, they focus on how code snippets with a given intent could be

rewritten in order to keep the same intent but gain in quality—that is, in

readability and understandability. For instance, the program in 2 can be

rewritten into the program in 3, which keeps the exact same functionality,

but exhibits different formal manifestations.

19

void leftpad(int i)
{

char *c;
if (i >= 0 && i < 10)

c = '0' + i;
}

Listing 3: A very terse way to left pad a digit with zeroes in the C language.

Why it becomes much clearer, though is not explicited by the authors

in terms of concepts such as cognitive surface, repleteness of a symbol sys-

tem or metaphorical representation of the main idea(s) at play (promoting

an integer to a character, rather than individually checking for each inte-

ger case). As the authors do employ terms which will form the basis of

an aesthetics of software development, such as clarity, simplicity, or ex-

pressiveness, there are nonetheless no overarching principles deployed to

systematize themanifestation of such principles, only examples are given.

While Kernighan and Plauer do not directly address the depth of the

relationship of source code and aesthetics, this is something that Peter

Molzberger undertakes five years later through an empirical, qualitative

study aimed at highlighting the role aesthetics play in an expert program-

mer’s practice (Molzberger, 1983). Molzberger’s study touches upon ideas

of over-arching structure, tension between clarity and personality, and lev-

els of expertise in aesthetic judgment. This short paper highlightsmultiple

instances of code deemed beautiful which will be explored further in this

thesis, without providing an answer as to why this might be the case. For

instance, a conception of code as literature does not explain instances in-

volving switch in scales and directions of reading, or a conception of code

asmathematics does not explain the explicitly requiredneed for a personal

touch when writing source code (Molzberger, 1983). This is an identifica-

tion of symptoms, but without explicit connection to a possibly common

cause.

In the context of formal academic research, such as the IEEE or the As-

20

sociation for Computing Machinery (ACM), subsequent work focuses on

how to quantitatively assess a given quality of source code either through

a social perspective on stylistic stances (Oman & Cook, 1990a), on the pro-

cess of writing (Norick et al., 2010), a semantic perspective on the lexicon

being used (Fakhoury et al., 2019; Guerrouj, 2013), an empirical study of

programming style in the efficiency of software teams (Reed, 2010; Cole-

man, 2018) or on the visual presentation of code in the comprehension

process (Marcus & Baecker, 1982) or through direct interviews (Hermans

et al., 2020). These focus on the connection of aesthetics with the per-

formance of software development—beautiful code as being related to a

productive programmer and good end-product. These methodologies are

mostly quantitative, and do not take into account the ”artistry” and ”craft”

component as laid out by Knuth and Molzberger, but are rather a big-data

representation of Kernighan and Plauer’s approach. In the emerging field

of the psychology of aesthetics, we canpoint to thework of Kozbelt, Dexter

et. al., who conducted quantitiative surveys of programmers’ relationship

with aesthetics (Kozbelt et al., 2012), as well as qualitative analyses of the

relationship between embodiment, aesthetics and code (Dexter et al., 2011).

The latter study also investigated the metaphorical references that pro-

grammers make to code, showing how programmers use terms like flow,

balance, flexible to refer to beautiful code (Dexter et al., 2011). The parallel

they establish between lexical uses and embodied cognition also draws on

the work of Lakoff et. al. to consider these metaphors as having a cogni-

tive purpose, amethodologywe also follow. This research aims to build on

their research anddevelop, from their discussionofmetaphor and embodi-

ment, howwe can conceive an aesthetics of source codewith a relationship

to various understandings of space.

The development of software engineering as a profession has led to the

publication of several books of specialized literature, taking a more prac-

tical approach to writing good code. Robert C. Martin’s Clean Code’s au-

dience belongs to the fields of business and professional trade, drawing

21

on references from architecture, literature and craft in order to lay out the

requirements of what he considers to be clean code. These specific mech-

anisms are highlighted in terms of how they will support a productive in-

crease in the quality of software developed, as opposed as being satisfying

in and of themselves. Clean Code was followed by a number of additional

publications on the same topic and with the same approach (Fowler et al.,

1999; Arns, 2005; Hunt & Thomas, 1999). Here, these provide an interesting

counterpoint to academic research on the formal quality of code by relying

on different traditions, such as the practical handbook, to explain why the

formal aspect of code is important.

Technical and engineering literature, then, establish the existence of

and need for aesthetics, presented as formal properties which then con-

stitute quality code. The methodology of these studies is often empiri-

cal, in the case of academic articles, looking at large corpora or interview-

ing programmers in order to draw conclusions regarding this relationship

between formal properties and quality. Monographs and business litera-

ture draw on the experiences of their authors as a programmers to pro-

vide source code examples of specific principles, without extending on

the rationale and coherence of these principles, let alone within a source

code-specific aesthetic framework. A particularly salient example is Greg

Oram’s edited volume Beautiful Code, in which expert programmers are in-

vited to pick a piece of code and explain why they like it, sometimes com-

menting it line by line (Oram&Wilson, 2007). This very concrete, empirical

inquiry into what makes source code beautiful does not, however, include

a comprehensive and consisten conclusion as towhat actuallymakes code

beautiful, but rather writing why they like the idea behind the code, or

manifestoes such as Matz’s Code as an Essay, in which he develops a per-

sonal perspective based on experience. As such, this monograph will be

integrated in our corpus, as commentary rather than academic research.

Another limitation to these studies is that they only address one specific

group of programmers, and one specific type of software being written. In

22

effect, those who write and read source code are far from being a homo-

geneous whole, and can be placed along distinct lines with distinct prac-

tices and standards (Hayes, 2017) (see 2.1). None of these studies considers

whether the conclusions established for one group would be valid for the

others.

One should also note the specific field of philosophy of computer sci-

ence, which inquires into the nature of computation, from ontological,

epistemological and ethical points of view. These are useful both in the

meta positioning they take regarding computer science as they well as in

their demonstration that issues of representation, interpretation and im-

plementation are still unresolved in the field. Particularly, Rapaport’s Phi-

losophy of Computer Science provides an exhaustive literature review of

the different fields which computer science is being compared to, from

mathematics, engineering and art but—interestingly—few references to

computer science as having any kind of relation with literature (Rapaport,

2005). Another, more specific perspective is given by Richard P. Gabriel in

his Patterns of Software, in which he looks at software as a similar endeav-

our as architecture, drawing on the works of Christopher Alexander and

focusing on its relationship to patterns, a subject we will investigate more

in chapter 3. Finally, Brian Cantwell-Smith’s introduction to his upcoming

The Age of Significance: An Essay on the Origins of Computation and Inten-

tionality touches upon these similar ideas of intentionality by suggesting

both that computationmight bemore productively studied from a human-

ities or artistic point of view than form a strictly scientific point of view

(Smith, 1998). These philosophical inquiries into computation mention

aesthetics mostly on the periphery, but nonetheless challenge the notion

of computation as strictly functional andmechanical, and suggest that ad-

ditional perspectives on the topic are needed, including that of the arts.

From a humanities perspective, recent literature taking source code as

the central object of their study covers fields as diverse as literature, sci-

ence and technology studies, humanities and media studies and philos-

23

ophy. Each of these monographs, edited volumes, catalog articles, book

chapters or PhD theses, engage with code in its multiple intricacies. Soft-

ware applications, source code excerpts, programming environments and

languages are included as primary sources, and are considered as texts to

be read, examined and interpreted.

A first look at Aesthetic Computing, edited by Paul A. Fishwick allows

us to higlight one of the important points of this thesis: the collection of

essays in this collected volume focus more often on the graphical output

of the software’s work from the end-user’s perspective than on the textual

manifestations of their source (e.g. Nake and Grabowski’s essay on the in-

terface as aesthetic event) (Fishwick, 2006). As for most studies of aesthet-

ics within computer science, themain focus is on Human-Computer Inter-

action (HCI) as the art and science of presenting visually the output and

affordances of a running program. While a vast and complex field, it is not

the topic of this thesis which, rather than focusing on the aesthetics of the

computable and executable, is limited to the aesthetics of the computed

(texts).

The following works, because of their dealing with source code as text,

and due to the background of their authors in literature and comparative

media studies, incorporate some aspect of literary theory and criticism,

and authors such as N. Katherine Hayles, Maurice J. Black and Alan Sond-

heim rely on it as their preferred lens. Black, in his PhDdissertationTheArt

of Code (Black, 2002) initiates the idea of a cross betweenprogramming and

literature, and hypothesizes that writing source code is an act that is closer

to modernism than postmodernism, as it relies on concepts of authorship,

formal linguistic systems and, to some extent, self-reference. The aim of

the study is to show how code functions with its own aesthetic, one which

is distinct and yet closely related to a literary aesthetic. After highlighting

how the socio-political structures of computing since the 1950s have af-

fected the constitution of the idea of a code aesthetic both in professional

and amateur programmers, Black moves towards the examination of code

24

practices as aesthetic practices. Here, Black limits himself to the presen-

tation of coding practices insofar as they are identified and referred to as

aesthetic practices, but exclusively through a social, second-hand account,

rather than formal, definition of a source code aesthetic through the close

reading of program texts.

Black establishes programming as literature, and vice-versa, he as-

sumes that it is possible towrite about literature through the lens of source

code. However, the actual analysis of source code with the help of formal

literary theories is almost entirely side-stepped, mentioning only Perl po-

etry as an overtly literary use of code, even though it represents only a mi-

nor fraction of all program texts. In summary, Black provides a first study

in code as a textual object and as a textual practice whose manifestations

programmers care deeply about, but does not address what makes code

poetry different in its writing, reading and meaning-making than natural-

language poetry.

N. Katherine Hayles, in My Mother Was A Computer: Digital Subjects

and Literary Texts (Hayles, 2010), and particularly in the Speech, Writing,

Code: Three Worldviews essay temporarily removes code from its imme-

diate social and historical situations and establishes it as a cognitive tool

as significant in scale as those of orality and literacy (Ong, 2012), and at-

tempts to qualify this worldview both in opposition to Saussure’s parole

and Derrida’s trace, following cybernetics andmedia studies scholars such

as Friedrich Kittler and Mark B. Hansen. Specifically, she introduces the

idea of a Regime of Computation, which relies on the conceptual speci-

ficities of code-based expression (among which: depth, dynamism, frag-

mentation, etc.). Source-code specific contributions touch upon literary

paradigms and cognitive effect in two ways. First, she highlights the way

code recombines some traditional dialectics of literary theory, namely

paradigmatic/syntagmatic, discreete/continuous, compilation/interpreta-

tion, and flat/stacked languages, clearly acting as a different mode of ex-

pression. Second, she draws on a comparison between twomain program-

25

ming paradigms, object-oriented programming and procedural program-

ming, and on the syntax of programming languages, such as C++, in order

to highlight a novel relationship between the structure and themeaning of

programming texts, a structure which depends on its degree of similarity

with natural languages.

While Hayles provides the basis for a much deeper analysis of source

code’s formal literary properties, she alsomaintains that source code stud-

ies should keep in mind the ever-underlying materiality that this very

source code relies on; and then locates this materiality in the embodiment

of users and readers, along with authors such as Mark Hansen (Hansen,

2006), Bernadette Wegenstein (Wegenstein, 2010) and Pierre Lévy (Lévy,

1992). Beyond the brief acknowledgment that she has of the political

and economical conditions of software development and their impact on

electronic texts, Hayles also stops short of considering programming lan-

guages in their varieties, and thematerial apparatuseswhich support them

(documentation, architectures, compilers, tutorials, conferences and com-

munities). Building on this approach, a conception of programming lan-

guages as amaterial seems like a fruitful avenue for looking into the formal

possibilities they afford.

Alan Sondheim’s essay Codework (Sondheim, 2001), as the introduction

of the American Book Review issue dedicated to this specific form, pro-

vides another aspect of poetrywhich integrates source code as a creole lan-

guage emerging from the interplay of natural andmachine languages. Yet,

this specific aspect of literary work scans the surface of code rather than

its structure and therefore provides more insight as to how humans repre-

sent code through speech, rather than representing speech through code.

This presents a somewhat postmodern view of programming languages,

approaching them as a relational, mutable conception of language as as

series speech-acts, and leaving aside their structural and post-structural

characteristics. Codework is essentially defined by its content andmilieu,

one which focuses on human exchanges and bypasses any involvement of

26

machine-processing.

Another perspective on the relationship between speech and code is ex-

ploredbyGeoff Cox andAlexMclean in SpeakingCode: CodingasAesthetic

andPolitical Expression (Cox&McLean, 2013). They establish reading, writ-

ing and executing source code as a speech-act, extending J.L. Austin’s the-

ory to a broader political application by includingArendt’s approach of hu-

man activities and labor (Arendt, 1998), from which coding is seen as the

practice of producing laboring speech-acts.

They consider source code as a located, instantiated presence, under-

stood as a semantic object with a political load affecting the multiple eco-

nomic, social and discursive environments in which it lives. Focusing on

speech particularly, this study doesn’t quite address the syntactic speci-

ficities of codes, for example by looking at the use of loops, arrays, or other

syntactical structures briefly touched upon by Hayles, and focusing on its

imperative qualities. Side-stepping the particular grammatical features of

that speech, the authors nonetheless often illustrate the points they are

working through, or begin developing those points, with snippets of code

written by either McLean or software artists, thus engaging with details of

source code and taking a step away from the dangers of fetishizing code,

or sourcery (Chun, 2008). They include both deductive code (commenting

existing source code) or inductive code (code written to act as an example

to a point developed by the authors), in a show of the intertextuality of

program texts and natural texts.

Away from the cultural relevance of code as developed by Cox and

McLean, Florian Cramer focuses on the cultural history of writing in com-

putation, tying our contemporary attention to source code into an older

web of historical attempts at integrating combinatorial and supernatu-

ral practices from Hebraic texts to Leibniz’s universal languages (Cramer,

2003). It is in this space between magic and logic that Cramer locates to-

day’s experiments in source code (i.e. source code poetry, esoteric lan-

guages and codeworks). Such a positioning of technology across the

27

realms of art, religion and knowledge can also be found in Simondon’s

definition of a technical object’s essence (Simondon, 1958). By relocating it

betweenmagic and reality, code is no longer just arbitrary symbols, or ma-

chine instructions but also ideal execution, a set of discreete forms which

relate to the totality of the world. As formal execution is considered a

cosmogonical force, it becomes synonymouswith performative execution,

throughwhich it ties back to cultural practices throughout the ages, within

both religious and scientific contexts.

Cramer extracts five axes along which to apprehend code-based works:

totality/fragmentation, rationalization/occultation, hardware/software,

syntax/semantics, artificial/natural language. While all these axes overlap

each other, it is the syntax/semantics axis which aligns most with this re-

search, given our particular attention to textuality. Yet, we will see how

how themes of obfuscation, fragmentation, language and material will

come into play as we develop our inquiry. Towards the end of the book,

his development of the concept of speculative programming is also partic-

ularly fruitful as the attempt to become a figure of thought and reflection

in theory and artistic practice. Cramer states:

formalisms […] have a cultural semantics of their own, even on the

most primitive and basic level. With a cultural semantics, there

inevitably is an aesthetics, subjectivity and politics in computing.

(Cramer, 2003)

This points to the relationship between the formal disposition of source

code within program texts and the cultural communities composed of the

writers and readers of these program texts. As such, it highlights that, code

does have social components of varying natures, insofar as it operates as

an expressive medium between varying subjects.

Adrian MacKenzie takes on such a social approach to source code, as

part of a broader inquiry on the nature of software, through this social

lens in Cutting Code: Software and Sociality (Mackenzie, 2006). The au-

28

thor focuses on a relational ontology of software, rather than on a phe-

nomenology: it is defined in how it acts upon, and how it is being acted

upon by, external structures, from intellectual property frameworks to de-

sign philosophies in software architectures; it only provides an operational

definition—software is what it does. His analysis of source code poetry fo-

cuses on famousPerl poems, Jodi’s code-based artworks andAlexMcLean’s

forkbomb.pl (see 78), concerned with the executability of code as its domi-

nant feature, dismissing Perl poetry as ”a relatively innocuous and inconse-

quential activity” (Mackenzie, 2006). While software could indeedbe a ”pat-

terning of social relations” (Mackenzie, 2006), these social relations also

take place through highly-constrained linguistic combinations in program

texts. This tending to the material realities of software embedded within

social and cultural networks and traditions is echoed in David M. Berry’s

The Philosophy of Software: Computation andMediation in the Digital Age.

His definition of materialities, however, focuses on the technical and orga-

nizational processes around code (e.g. work management, specifications,

test suites), rather than on the processes within code (e.g. styles, files and

languages). While this former definition results in what he calls a semi-

otic place (Berry, 2011), a location in which those processes are organized

meaningfully, such a semiotic sense of space also applies, as we will see in

5.2, to those intrinsic properties of source code.

Focusing specifically on the category of code poetry, Camille Paloque-

Bergès published, a couple of years later, Poétique des codes sur le réseau in-

formatique (Paloque-Bergès, 2009). This work deploys both linguistic and

cultural studies theorists such as Barthes and De Certeau in order to ex-

plain these playful acts of source code poetry, along with works of esoteric

languages and net.art. The first chapter focuses on digital literature as the

result of executed code in order to develop a heuristic to approach source

code, while the third and last chapter focusing on the means of distribu-

tion of these works, particularly on the development of net.art, 1337 5p43k

and codeworks. In the second chapter, PaloqueBergès provides an intro-

29

duction to creative acts in source code on both a conceptual level (drawing

from Hayles andMontfort) and on a technical, syntactical level. She looks

at specific programming patterns and practices (hello world, quines), tech-

nical syntax (e.g. $, @ as Perl tokens for expressing singular or plurals) and

cultural paradigms (De Certeau’s tactics and strategies), as she attempts

to highlight the specificities of source code for aesthetic manifestation

and invites further work to be done in this dual vein of close-reading and

theoretical contextualization, beyond specific instances of poetic program

texts.

Honing in on a minimal excerpt, 10 PRNT CHR$(205.5+RND(1)): GOTO 10;

(Montfort et al., 2014), is a collaborative work examining the cultural in-

tertwinings of a single line of code, through hardware, language, syntax,

outputs and themes. The whole endeavour is a rigorous close-reading of

source code, in a deductive fashion, working from the words on the screen

and elaborating on the context within which these words exist, in order

to establish the cultural relevance of source code. While the study itself,

being a close-reading of a single work, and particularly a one-liner, itself a

specific genre, is restricted in terms of broad aesthetic statements, it does

show how it is possible to talk about code not as an abstract construct but

as a concrete reality. Particularly interesting is the section dedicated to

the history of the BASIC programming language, and how particular lan-

guages afford particular statements and actions in a given historical con-

text, a point often glossed over in other studies.

A current synthesis of these approaches,Mark C.Marino’sCritical Code

Studies (Marino, 2020) and the eponymous research field it belongs to fo-

cuses on close-reading of source code as a method for interpreting it as

discourse. Particularly, it is organized around cases studies: each with

source code, annotations and commentary. This structure furthers the

empirical approachwe have seen in Cox andMcLean’s code, or in Paloque-

Bergès’s examples, starting from lines of source code in order in order to

deduce cultural and social environments and intents through interpreta-

30

tion. This particular monograph, as is stated in the conclusion, offers a set

of possiblemethodologies rather than conclusions in order to engage with

code as its textual manifestations, assuming that the source code, viewed

from different angles, can reveal more than its functional purpose. While

Marino, with a background in the humanities, focuses mostly on the lit-

erary properties of code as a textual artifact, this thesis builds here on

some of his methodologies, particularly reading how the form of the code

complements its process and output, and searching the code for clever re-

purposing or insight. However, while Marino mentions the aesthetics of

code, he does not address the systematic composition of these aesthetics—

focusing primarily on what the code means and only secondarily on how

the code means it.

Taking a step back,Warren Sack’s The Software Arts (Sack, 2019) histori-

cizes software development as an epistemological practice, rather than as

a strictly economic trade. Connecting some of the main components of

software (language, algorithm, grammar), he demonstrates how these are

rooted in a liberal arts conception of knowledge and practice, particularly

visible as a continuation ofDiderot andD’Alembert’s encyclopedic attempt

at formalizing craft practices. By examining this other, humanistic, tradi-

tion in parallel with its dominantly acknowledged scientific counterpart,

Sack shows the multiple facets that code and software can support. Start-

ing from the concept of ”translation” as an updated version of Manovich’s

”transcoding”, Sack analyzes what is being translated by computing, such

as analyses, rhetoric and logic, but does not however address the nature

of the processes into which these concepts are translated—algorithms as

(liberal) ideas, but not as texts. Nonetheless, this work offers a switch

in perspective which will be helpful when we come to consider the rela-

tionship of source code with domains that are not primarily related to the

sciences—i.e. the literary and the architectural, approached from a craft

perspective—as well as with the problem domain which code aims at de-

picting.

31

This activity of programming as craft, already acknowledged by pro-

grammers themselves, is further explored in Erik Piñeiro’s doctoral thesis

(Pineiro, 2003). In it, he examines the concrete, social and practical justi-

fications for the existence of aesthetics within the software development

community. Departing from specific, hand-picked examples such as those

featured in Marino’s study, his is more of an anthropological approach, re-

vealing what role aesthetics play in a specific community of practitioners.

Outlining references to ideas such as cleanliness, simplicity, tightness, ro-

bustness, amongst others, as aesthetic ideals that programmers aspire to,

he does not however summon any specific aesthetic field (whether from

literature, mathematics, craft or engineering), but rather frames it in terms

of intrsumental goodness, with the aesthetics of code being an attempt to

reach excellence in instrumental action. While he carefully lays out his ar-

gument by focusing on what programmers actually say, as they exchange

about there practice online. However, there remains two limitations: it is

not clear how source code as a textual material can afford to reach such

aesthetic ideals, and whether or not these aesthetic ideals apply to other

groups of writers of code, such as the code poetsmentioned in some of the

works above. Nonetheless, this empirical approach from the discourses of

programmers is a methodology which this study shares.

In summary, this literature review allows us to have a better grasp of

how the relationship between source code and aesthetics has been studied,

both from a scientific and engineering perspective, and from a humanities

perspective.

In the former approach, aesthetics are acknowledged as a component of

reading and writing code, and assessed through practical examples, quan-

titiative analysis and, to a lesser extent, qualitative interviews. The re-

search focus is on the effectiveness of aesthetics in code, rather than on

unearthing a systematic approach to making code beautiful, even though

issues of cognitive friction and understanding, as well as ideals of clean-

liness, readability, simplicity and elegance do arise. As such, they form

32

a starting point of varied, empirical investigations, but do not consider

how source code aesthetics might overlap with various other aesthetic do-

mains.

On a more metaphysical level, works in the field of philosophy of com-

puter science point at the fact that the nature of computing and software

are themselves evasive, straddling different lineswhile not aligning clearly

with either science, engineering or arts—pointing out that software is in-

deed something different.

As for the humanities, the focus is predominantly on literary heuristics

of a restricted corpus or on socio-cultural dynamics, and the details and

examples of the actual code syntax and semantics are often omitted even

though the aesthetic aspects of a literary or cultural nature are equated

with a new kind of writing. There is a potential for beauty and art in source

code, as made obvious by code poetry, but such a potential is not assessed

through the sameempirical lense as the formerpart of our literature review

and only secondarily investigating which of intrinsic features of code can

support aesthetic judgments and experiences.

Still, some recent studies, such as those by Paloque-Bergès,Montfort et.

al, Cox and McLean and Marino, do engage directly with source code ex-

amples, and these constitute important landmarks for a code-specific aes-

thetic theory and methodology, whether it is as poetic language, speech-

act, or critical commentary. Source code is taken as a unique literary de-

vice, yet it remains unclear in which aspects, besides its executability, it is

different from both natural languages and low-level machine languages,

and how this literary aspect relates to the effective, mathematical and

craft-like nature of source code, as considered in the computer science and

engineering literature.

33

1.2 The aesthetic specificities of source code

We can now turn to some of the gaps and questions left by this review.

These can be grouped under three broad areas: dissonant aesthetic fields,

lack of correspondance between empirical investigations and theoretical

frameworks, and an absence of close-reading of program texts as expres-

sive artifacts.

First, we can see that there aredifferent aestheticfields referred towhen

assessing aesthetics in source code. By aesthetic field, we mean the set of

medium-specific symbol systems which operate coherently on a stylistic

and thematic level. The main aesthetic fields addressed in the context of

source code are those of literature, architecture as well as craft and math-

ematics. Each of these have specific ways to structure the aesthetic ex-

perience of objects within that field. For instance, literature can operate

in terms of plot, consonance or poetic metaphor, while architecture will

mobilize concepts of function, structure or texture. While we will reserve

a more exhaustive description of each of these aesthetic fields in 4, the

first gap to highlight here is how thesemultiple aesthetic fields are used to

frame the aesthetics of source code, without this plurality being explicitely

addressed. Depending on which study one reads, one can see code as liter-

ature, as architecture, as mathematics or as craft, and there does not seem

to be a consensus as to how each of thesemap to various aspects of source

code.

Second, we can see a disconnect between empirical and theoretical

work. The former, historically more present in computer science litera-

ture, but more recently finding its way into the humanities, aims at ob-

serving the realities of source code as a textual object, one which can be

mined for semantic data analysis, or as a crafted object, one which is pro-

duced by programmers under specific conditions and replicated through

examples and principles. Conversely, the theoretical approach to code, fo-

cusing on computation as a broad phenomenon encompassing engineer-

34

ing breakthroughs, social consequences and disruption of traditional un-

derstandings of textuality, is rarely confronted with the concrete, physical

manifestations of computation in the form of source code.

In consequence, there are theoretical frameworks that emerge to ex-

plain software (e.g. computation, procedurality, protocol), but no compre-

hensive frameworks which tend to the aesthetics of source code. In the

light of the history of aesthetic philosophy, literature studies and visual

arts, defining such a precise framework seems like an elusive goal, but it

is rather the constellation of conflicting and complementing frameworks

which allow for a better grasp of their object of study through a dialec-

tical approach. In the case of the particular object of this study, the es-

tablishment of such framework taking into account both the specifically

textual dimension of source code and the various practices of all sorts of

programmers is yet to be done. Following the software development and

programming literature, such a framework could productively focus on the

role and purpose that aesthetics play within source code, rather than as-

suming their autotelic nature as art-objects.

Finally, and related to thepoint above, we can identify amethodological

gap. Due to reasons such as access and skill, close-reading of source code

from a humanities perspective has been mostly absent, until the recent

emergence of fields of software studies and critical code studies. The result

is that many studies engaging with source code as a literary object did not

provide code snippets to illustrate the points beingmade. While not neces-

sary per se, I argue that if one establishes an interpretative framework re-

lated to the nature and specificity of software, such a framework should be

reflected in an examination of one of the main components of software—

source code. The way that this gap has been productively addressed in

recent years has primarily been done through an understanding of code as

a part of broader socio-technical environments, inscribing it within plat-

form studies. This focus on the context in which source code exists there-

fore leaves some room for similar approaches with respect to its textual

35

qualities. Despite N. Katherine Hayles’s call for medium-specificity when

engaging with code (Hayles, 2004), it seems that there has not yet been

close-readings of a variety of program texts in order to assess them as spe-

cific aesthetic objects, in addition to their conceptual and socio-technical

qualities.

Following this overview of the state of the research on this topic, and

having identified some gaps remaining in this scholarship, we can now

clarify some of the problems resulting from those gaps with the following

research questions.

1.2.1 What does source code have to say about itself?

The relative absence of empirical examination of its source component

when discussing code does not seem to be consistent with a concep-

tion of source code as a literary object. As methodologies for examining

the meanings of source code have recently flourished, the techniques of

close-reading, as focusing first and foremost on ”the words on the page”

(Richards, 1930) have been applied for extrinsic means: extract what the

lines of code have to say about the world, rather than what they have to

say about themselves, about their particular organization as source files,

as typographic objects or as symbol systems expressing concepts about

the computational entities they describe. In this sense, it is still unclear

how the possible combinations of control flow statements, abstraction lay-

ers, function signatures, data types, variable declaration and variable nam-

ing, among other syntactic devices, enable program texts to be expressive.

While close-reading will be a useful heuristic for investigating these prob-

lems, it will also be necessary to question the unicity of source code, and

take into account how it varies across writers and readers and the social

groups they constitute. This problem therefore has to be modulated with

respect to the socio-technical environment in which it exists—it will then

be possible to highlight to what extent the aesthetics of source code vary

36

across these groups, and to what extent they don’t.

1.2.2 How does source code relate to other aesthetic

fields?

Multiple aesthetic fields are being mapped onto source code, allowing us

to grasp such a novel object through more familiar lenses. However, the

question remains of what it is about the nature of source code which can

act as common ground for approaches as diverse as literature, mathemat-

ics and architecture, or whether these references only touch on distinct

aspects of source code. When one talks about structure in source code,

do they refer to structure in an architectural sense, or in a literary sense?

When one refers to syntactic sugar in a programming language, does this

have implications in a mathematical sense? This question will involve in-

quiries into the relationship of syntax and structure, of formality and tac-

itness, ofmetaphor and conceptualmapping, and in understanding of how

adjectives such as elegant, clear and simple might have similar meanings

across those different fields. Offering answers to these questionsmight al-

lowus tomove fromamulti-faceted understanding of source code towards

a more specific one, as the meeting point for all these fields, source code

might reveal deeper connections between each of those.

1.2.3 How do the aesthetics of source code relate to its

functionality?

The final problem concerns the status of aesthetics in source code not as

an end, but as a means. A cursory investigation on the topic immediately

reveals how aesthetics in source code can only be assessed only once the

intended functionality of the software described has been verified. This

stands contra to the way of a rather traditional opposition between beauty

and functionality, and therefore suggests further exploration. How do aes-

37

thetics support source code’s functional purpose? And are aesthetics lim-

ited to supporting such purpose, or do they serve other purposes, beyond

a strictly functional one? This paradox will relate to our first problem, re-

garding the meaning-making affordances of source code, and touch upon

how the expressiveness of formal languages engagewith different concep-

tions of function, therefore relating back to Goodman’s concept of the lan-

guages of art, of which programming languages can be part of. Particu-

larly, this study will investigate how aesthetic configurations aim at mak-

ing complex concepts understandable.

1.3 Methodology

To address such questions, we propose to proceed from looking at two

kinds of texts: program texts and meta-texts. The core of our corpus will

consist of the two categories, with additional texts and tools involved.

Due to the intricate relationship between source code and digital com-

munication networks, vast amounts of source code are available online na-

tively or have been digitized. They range from a few lines to several thou-

sands, date between 1969 and 2021, with a majority written by authors in

NorthernAmerica orWesternEurope. Onone side, code snippets are short,

meaningful extracts usually accompanied by a natural language comment

in order to illustrate a point. On the other, extensive code bases are large

ensembles of source files, often written in more than one language, and

embedded in a build system2. Both can be written in a variety of pro-

gramming languages, as long as these languages are composed in unicode-

encoded alphanumeric characters.

This lack of limitations on size, date or languages stems from our em-

pirical approach. Since we intend to assess code conditionally, that is,

based primarily on its own, intrinsic textual qualities, it would not follow

2A build system is a series of code transformations intended to generate executable code.

38

thatwe should restrict to any specific genre of program text. Aswe carry on

this study, distinctions will nonetheless arise in our corpus that align with

some of the varieties amongst source—for instance, the aesthetic proper-

ties of a program text composed of one line of codemight be different from

those exhbited by a program text made up of thousands of lines code.

We also intend to use source code in both a deductive and an induc-

tive manner. Through our close-reading of program texts, we will high-

light someaesthetic features related to its textuality, taking existing source

code as concrete proof of their existence. Conversely, wewill alsowrite our

own source code snippets in order to illustrate the aesthetic features dis-

cussed in natural language. We will make use of this technique in order to

illustrate some of our points. Rather than discussing complex code snip-

pets, we will sometimes list translated, simplified versions in the Python

programming language, and refer to the reader to the actual listings in the

annex. This use of source code snippets is widely spread among commu-

nities of programmers in order to qualify and strengthen their points in

online discussions, andwe intend to follow thisweaving in ofmachine lan-

guage and natural language in order to support our argumentation. This

approachwill therefore oscillate between theory andpractice, the concrete

and the abstract, as it both extracts concepts from readings of source code

and illustrates concepts by writing source code.

The case of programming languages is a particular one: they do not ex-

clusively constitute program texts (unless they are considered strictly in

their implementation details as lexers, interpreters and compilers, them-

selves described in program texts), but are a necessary condition for the

existence of source code. They therefore have to be taken into account

when assessing the aesthetic features of program text, as integral part of

the affordances of source code. Rather than focusing on their context-free

grammars or abstract notations, or on their implementation details, we

will focus on the syntax and semantics that they allow the programmer to

use. Programming languages are hybrid artefacts, and their intrinsic qual-

39

ities are only assessed insofar as they relate to the aeshetic manifestations

of source code written in those languages.

Meta-texts on source code make up our secondary corpus. Meta-texts

are written by programmers, provide additional information, context, ex-

planation and justification for a given extract of source code, and is a sig-

nificant part of the software ecosystem. Even though they are written in

natural langauge, this ability to write comments has been a core feature

of any programming language very early on in the history of computing,

linking any program text with a potential commentary, whether directly

among the source code lines (inline commentary) or in a separate block

(external commentary)3. Examples of external commentaries include user

manuals, textbooks, documentation, journal articles, forums discussions,

blog posts or emails. The inclusion in our corpus of those meta-texts is

due to two reasons: the practical reason of the high epistemological bar-

rier to entry when it comes to assessing source code in unfamiliar linguis-

tic or hardware environments, and the theoretical reason of including the

aesthetic judgment of programmers as it supports our conditional, rather

than constitutive, approach.

While we intend to look at source through close-reading, favoring the

role and essence of each line as a meaningful, structural element, rather

than that of the whole, our interpretation of meta-texts will take place via

discourse analysis. Building on Dijk and Kintsch’s work on discourse com-

prehension (Dijk & Kintsch, 1983), we intend to approach these texts at a

higher level, in terms of the lexical field they use, as a marker of the aes-

thetic field they refer to, as well as at a lower level, noting which specific

syntactic aspects of the code they refer to. This focus on both the micro-

level (e.g. local coherence and proposition analysis) and on themacro-level

(e.g. socio-cultural context, intended aim and lexical field usage) will al-

low us to link specific instances of written code with the broader semantic

3Such adistinction isn’t a strict binary, and systemsof inscription existwhich couple code

a commentary more tightly, such as WEB or Juptyer Notebook.

40

field that they exist in. This connection between micro- and macro- relies

on the hypothesis that there is something fundamentally similar between

a source code construct, its meaning and use at the micro-level, and the

aesthetic field to which it is attached at amacro-level, a hypothesis wewill

address further when investigating the role of metaphor in source code.

In this aim, we will also mobilize metaphor theory from Lakoff to identi-

fiy some of the properties of code as a target domain through some of the

features of the aesthetic fields taken as source domains (Lakoff & Johnson,

1980).

In the end, this process will allow us to construct a framework from

empirical observations. The last part of our methodology, after having

completed this analysis of program-texts and their commentaries, is to

cross-reference it with texts dealing with the manifestation of aesthet-

ics in those peripheral fields. Literary theory, centered around the works

of Mary-Laure Ryan, Roland Barthes and Paul Ricoeur can shed light on

the attention to form, on the interplay of syntax and semantics, of open

and closed texts, and suggest productive avenues through the context of

metaphor. Architecture theory will be involved through the two main ap-

proaches mentioned by software developers: functionalism as illustrated

by the credo form follows function and works by Vitruvius, Louis Sullivan

and the Bauhaus on one side, and pattern languages as initiated by the

work of Christopher Alexander on the other. Mathematical beauty will

be considered in its capacity to communicate complex concepts as well

as to act as a heuristic when developing proofs for complex theorems,

as explicited by scholars such as Gian-Carlo Rota and Nathalie Sinclair.

Throughout, wewill see howan approach to craft, as the enactment of tacit

knowledge in the creation of functional artefact can apply these domains.

This study therefore aims at weaving in empirical observations, dis-

course analysis and external framing, in order to propose systematic ap-

proaches to source code’s textuality. However, these will not unfold in

a strictly linear sequence; rather, there will be a constant movement be-

41

tween practice and theory and between code-specific aesthetic references

and broader ones: this interdisciplinary approach intends to reflect the

multifaceted nature of software.

1.4 Roadmap

Our first step, in 2, in this study is an empirical assessment of how pro-

grammers consider aesthetics with their practice or reading andwriting it.

After acknowledging and underlining the diversity of those practices, from

software developers and scientists to artists and hackers, we will iden-

tify which concepts and references are being used the most when refer-

ring to beautiful code—elegance, clarity, simplicity, cleanliness, and oth-

ers. These concepts will then allow us to touch upon the field that are

being referred to when considering the practice of programming: litera-

ture, architecture and mathematics as domains in themselves, and craft

as a particular approach to these domains. Finally, we will how how the

overlap of these concepts can be found in the process of understanding—

communicating abstract ideas through concrete manifestations. Indeed,

we will see that how source code is written allows us to graspwhat it does.

After establishing the role of aesthetics as the answer to source code’s

cognitive complexity, we will proceed to analyze further such a relation-

ship between understanding, source code and aesthetics in 3. We will see

that one of themain features of source code is the elusiveness of its mean-

ing, whether effective or intended. Beautiful code is often code that can be

understood clearly, which raises the following question: how can a com-

pletely explicit and formal language allow ambiguity? The answer to this

question will involve an analysis of the two audiences of source code: hu-

mans and machines. This ambivalent status will be developed through

the notion of abstract artifact, highlighting both material and cognitive

dimensions of our object of study. We will show how source code needs

42

to provide a gradual interface between different modes of being of source

code: source code as text, source code as structure and source code as the-

ory. The need for aesthetics arises from the tradeoffs that need to bemade

when these differentmodes of being overlap. In particular, one of theways

that enable humans to grasp computational concepts aremetaphorical de-

vices. Since metaphors aren’t exclusively literary devices, looking at them

from a cognitive perspective will also raise issues of modes of knowledge,

between explicit, implicit and tacit.

Taking a step back, we will then assess in 4 how the different fields

that are being referred to when talking about source code have touched

upon these issues of understanding, from rhetoric to literature, through

architecture andmathematics. Thinking in terms of surface-structure and

deep-structure, we will establish a first connection between program texts

and literary text through their reliance on linguistic metaphors to sug-

gest a particular grasp on concepts of time and space. The understanding

of beauty in architecture, based on the two traditions mentioned above,

will provide an additional perspective by providing concepts of structure,

function and usability. These will echo a final inquiry into mathematical

beauty, drawing a direct link between idea and implementation, theorem

and proof, and providing a deeper understanding of the concept of ele-

gance.

With a firmer grasp on the stakes of source code as a text to be under-

stood, and on how aesthetics can enable understanding, we turn to its ef-

fectivemanifestations to developour framework in 5. First, wewill see how

programming languages act as linguistic intefraces to computational phe-

nomena, both from an objective and from a subjective perspective. Con-

sidering programming languages as formal grammars will show that there

are very different conceptions of semantics and meanings expected from

the computer than those expected froma human, even though amachine’s

perspective on valuable code could still be based around concepts of ef-

fectiveness, simplicity and performance. Human use of programming lan-

43

guages reaches into the extreme of esolangs—an investigation into those

will reveal that language can be considered as a material, one whose base

elements can be recombined to represent specific structures. Working

through structure, syntax and vocabulary, we will be able to formalize a

set of textual typologies involved in producing an aesthetic experience

through source code. Particularly, we will highlight where those experi-

ence differ across linguistic communities of practice, andwhere they over-

lap, tracing connections between specific textual configurations of source

code with the ideals summoned by the programmers. Finally, we will con-

clude on how aesthetics are both conditioned to the function of the arte-

facts they are manifested in, and themselves perform a functional role in

in epistemological communication, operating throughmetaphorical refer-

ences and structural arrangements at various scales.

We will then turn back to our research questions to suggest some pos-

sible answers. The overlap of the aesthetic fields hints at a specifically

spatial nature of program texts. Indeed, the specific aesthetics of source

code are those of a constant doubling between the specificities of the hu-

man (such as natural handling of ambiguity, intuitive understanding of

the problem domain, and ability to shift perspectives) and of the machine

(such as speed of execution, and reliance on explicit formal grammars).

This duality will also be seen in the tension between surface structure,

one that is textual and readable, and deep structure, one that is made up

of dynamic processes representing complex concepts, and yet devoid of

any fluidity or ambiguity. It is this dynamism, both in terms of where and

when code could be executed, which suggest the use of aesthetics in or-

der to grasp more intuitively the topology and chronology, the state and

behaviour of an executed program text.

Finally, we will relate Goodman’s conception of art as cognitively effec-

tive symbol system, and of Simondon’s consideration of aesthetic thought

as a link between technical thought and religious thought. Starting from a

practical perspective on aesthetics taking from the field of craft—the thing

44

well done—, aesthetics also highlight functionality on a cognitive level—

the thingwell thought. Beauty in source code seems tobedominantlywhat

is useful and thoughtful, evenwhen they are reflected in the distortingmir-

rors of hacks and esoteric languages, broadening our possible conceptions

of what aesthetics can do, and what functionality can be.

1.5 Implications and readership

This thesis fits within the field of software studies, and aims at clarifying

what we mean when we refer to code as…. Code as literature, architec-

ture or mathematics, code as philosophy or as craft, are metaphors which

can be examined productively by looking at the texts themselves and the

discourses around them, an approach that has only been deployed in rela-

tively recent work.

This relationship between practice, function and beauty is the broad,

underlying question of this study. In the vein of the cognitive approach to

art and aesthetics, this study is an attempt to show how aestethics play

a communicative role, and how concrete manifestations can, through a

metaphorical process, hint at broader effective ideas. In this sense, this

study is not just about the relation of aesthetics and function, but also

about the function of aesthetics. While this idea of aesthetics as a way

of communicating ideas could be equally applied across artistic and non-

artistic domains, another aim of this thesis is to highlight the context-

sensitivity of aesthetic standards: practices, uses and purposes determine

as much, if not more, of the aesthetic value of a given program text, than a

shared medium.

By examining the object of the practice of programmers at a close-level,

this study hopes to contribute to a clarification ofwhat exactly is program-

ming, along with the consequences of the embedding of software in our

social, economic and political practices. In order to address the question

45

of whether algorithms are political in themselves, or if it is their use which

is political, it is important to define clearly what it is that we are talking

about when discussing algorithms. A clarification of source code on a con-

crete level will clarify what this essential component of algorithms is, and

opens up potential for further work in terms of thinking no longer of the

aesthetics of source code, but of its poetics; that is, in the way source code,

as a language of art, can also be a way of worldmaking.

To this end, this thesis is aimed at a variety of readers and audience.

From the humanities perspective, digital humanists and literary theo-

rists interested in the concrete manifestations of source code as specific

meaning-making techniques will be able to find the first steps of such an

approach being laid out, and contrast these specific technique with the

broader poetics of code studied by other scholars, or with the aesthetics

of natural language texts.

Programmers and computer scientists will find an attempt at formal-

izing something they might have known implicitly ever since they started

practicing writing and reading code, and the approach of languages as po-

etics and structuremight help them think through these aspects in order to

write perhaps more aesthetically pleasing, and thus perhaps better, code.

Conversely, anyone engaged seriously in an activity which involves a cre-

ative process could find here a rigorous study of what goes on into a spe-

cific craft, asking how their own practice engages with tools andmodes of

knowledge, and how they approach the communicative function of their

work as an aesthetic endeavour.

Finally, such a study of aesthetics, then, will also be of interest to artists

and art theorists. By investing aesthetics without a direct relation to the

artwork, but rather within a functional purpose, this study suggests that

one can think through beauty and artworks not as ends, but as means to

accomplish things that formal systems of explanationmight not be able to

achieve. An aesthetics of source code would therefore aim at highlighting

the purpose of functional beauty within a textual environment.

46

	Introduction
	Context
	The research territory: code
	Beautiful code
	Literature review

	The aesthetic specificities of source code
	What does source code have to say about itself?
	How does source code relate to other aesthetic fields?
	How do the aesthetics of source code relate to its functionality?

	Methodology
	Roadmap
	Implications and readership

	Aesthetic ideals in programming practices
	The practices of programmers
	Software developers
	Hackers
	Scientists
	Poets

	Ideals of beauty
	Introduction to the Methodology
	Lexical Field in Programmer Discourse

	Aesthetic domains
	Literary Beauty
	Scientific beauty
	Architectural beauty

	Understanding source code
	Formal and contextual understandings
	Between formal and informal
	Knowing-what and knowing-how

	Understanding computation
	Software ontology
	Software complexity
	The psychology of programming

	Means of understanding
	Metaphors in computation
	Tools as a cognitive extension

	Beauty and understanding
	Aesthetics and cognition
	Source code as a language of art
	Contemporary approaches to art and cognition

	Literature and understanding
	Literary metaphors
	Literature and cognitive structures
	Words in space

	Architecture and understanding
	Form and Function
	Patterns and structures
	Material knowledge

	Forms of scientific activity
	Beauty in mathematics
	Epistemic value of aesthetics
	Aesthetics as heuristics

	Machine languages
	Linguistic interfaces
	Programming languages
	Qualities of programming languages
	Styles and idioms in programming

	Spatial aesthetics in program texts
	Matters of scale
	Semantic layers
	Between humans and machines

	Contexts of functions
	Definitions of function
	Functions of source code
	Function in aesthetics

	Conclusion
	Findings
	What does source code have to say about itself?
	How does source code relate to other aesthetic fields?
	How do the aesthetics of source code relate to its functionality?

	Contribution
	Limitations

	Opening

