
The role of aesthetics in the

understandings of source code

Pierre Depaz

under the direction of

Alexandre Gefen (Paris-3)

and Nick Montfort (MIT)

ED120 - THALIM

last updated: 2023-08-02

Chapter 2

Aesthetic ideals in

programming practices

The first step in our study of aesthetic standards in source code will iden-

tify the aesthetic ideals ascribed by programmers to the source code they

write and read; that is, the syntactic qualifiers and semantic fields that they

refer to when discussing program texts. To that end, we first start by clari-

fying whom we refer to by the term programmers, revealing a multiplicity

of practices and purposes, frommassively-distributed codebases to ad hoc,

one-line solutions, cryptic puzzles and printed code.

We then turn to the kinds of beauty that these programmers aspire to.

After expliciting our methodology of discourse analysis, we engage in a

review of the various kinds of publications that make up programmers’

discourses, in which they qualify their practice. Out of these, we identify

a cluster of adjectives and comparisons which will provide an empirical

basis for considering the desirable and undesirable aesthetic properties of

source code.

We then move to a description of which aesthetic fields are being ref-

erenced by programmers on a broader level, and consider how multiple

47

kinds of beauties, from literary, to scientific and architectural conceptions

of beauty can overlap and be referred to in the same medium. Such an

overlap will reveal the importance of function, craft and knowledge in the

disposition and representation of code. Our conclusion focuses on how

understanding plays a central role in an aesthetic approach to source code,

and results from the specificity of code as a cognitive material.

2.1 The practices of programmers

The history of software development is that of a practice born in the af-

termath of the second world war, one which trickled down to broader and

broader audiences at the eve of the twenty-first century. Through this de-

velopment, various paradigms, platforms and applications have been in-

volved in producing software, resulting in different epistemic communi-

ties (Cohendet et al., 2001) and communities of practice (Hayes, 2017), in

turn producing different types of source code. Each of these write source

code with particular characteristics, and with different priorities in how

knowledge is produced, stored, exchanged, transmitted and retrieved. In

this section, we take a socio-historical stance on the field of programming,

highlighting how diverse practices emerge at different moments in time,

how they are connected to contemporary technical and economic orga-

nizations, and for specific purposes. Even though such types of reading

and writing source code often overlap with one another, this section will

highlight a diversity of ways in which code is written, notably in terms of

origin—how did such a practice emerge?—, references—what do they con-

sider good?—, purposes—what do they write for?—and examples—how

does their code look like?.

First, we take a look at the software industry, to identify professional

software developers, the large program texts they work on and the specific

organizational practices within which they write it. They are responsible

48

for the majority of source code written today, and do so in a professional

and productive context, where maintainability, testability and reliability

are the main concerns. Then, we turn to a parallel practice, one that is

often exhibited by software developers, as they also take on the stance

of hackers. Disambiguating the term reveals a set of practices where cu-

riosity, cleverness, and idiosyncracy are central, finding unexpected solu-

tions to complex problems, sometimes within artificial and playful con-

straints. Scientists operate within an academic environment, focusing on

concepts such as simplicity, minimalism and elegance; they are often fo-

cused on theoretical issues, such as mathematical models, as well as pro-

gramming language design, but are also involved in the implementation

of algorithms. Finally, poets read and write code first and foremost for its

textual and semantic qualities, publishing code poems online and in print,

and engaging deeply with the range ofmetaphors allowed by this dynamic

linguistic medium.

While this overview encompasses most of the programming practices,

we leave aside some approaches to code, mainly because they do not di-

rectly engage with the representation of source code as a textual matter.

More and more, end-user applications provide the possibility to program

in rudimentary ways, something referred to as the ”low-code” approach

(Team, 2021), and thus contributing to the blurring of boundaries between

programmers and non-programmers1.

2.1.1 Software developers

As Niklaus Wirth puts it, the history of software is the history of growth in

complexity (Wirth, 2008), while also following a constant lowering of the

1For instance, Microsoft’s Visual Basic for Applications, Ableton’s Max For Live, MIT’s

Scratch or McNeel’s Grasshopper are all programming frameworks which are not covered

within the scope of this study. In the case of VBA and similar office-based high-level pro-

gramming, it is because such a practice is a highly personal and ad hoc one, and therefore is

less available for study.

49

barrier to entry to the tools through which this complexity is managed.

As computers’ technical abilities inmemory storage and processing power

increased year on year since the 1950s, the nature of writing computer in-

structions shifted as well.

Frommachine dependence to autonomous language

In his history of the software industry, Martin Campbell-Kelly traces the

development of a discipline through an economic and a technological lens,

and he identifies three consecutive waves in the production of software

(Campbell-Kelly, 2003). Starting in the 1950s, and continuing throughout

the 1960s, software developerswere contractors hired towork directlywith

a specific hardware. These mainframes were large, expensive, and rigid

machines, requiring platform-specific knowledge of the correspondingAs-

sembly instruction set, the only programming language available at the

time2. Two distinct groups of people were involved in the operationaliza-

tion of such machine: electrical engineers, tasked with designing hard-

ware, and programmers, tasked with implementing the software. While

the former historically received the most attention (Ross, 1986), the lat-

ter was mostly composed of women and, as such, not considered essen-

tial in the process (Light, 1999). At this point, then, programming remains

hardware-dependent3.

2One of the first operating systems, MIT’s Tape Director, would be only developped in

1956 (Ross, 1986), which would facilitate some of the more basic memory allocation, process

management, and system calls
3Butmost important of all, the programmer himself had a verymodest view of his ownwork:

his work derived all its significance from the existence of that wonderful machine. Because that

was a unique machine, he knew only too well that his programs had only local significance and

also, because it was patently obvious that this machine would have a limited lifetime, he knew

that very little of his work would have a lasting value. Finally, there is yet another circumstance

that had a profound influence on the programmer’s attitude to his work: on the one hand, be-

sides being unreliable, his machine was usually too slow and its memory was usually too small,

i.e. he was faced with a pinching shoe, while on the other hand its usually somewhat queer or-

der code would cater for the most unexpected constructions. And in those days many a clever

50

In the 1960s, hardware switched from vacuum tubes to transistors

and from magnetic core memory to semiconductor memory, making

them faster and more capable to handle complex operations. On the

software side, the development of several programming languages, such

as FORTRAN, LISP and COBOL, started to address the double issue of

portability—having a program run unmodified on different machines—

and expressivity—expressing a program text in a high-level, English-like

syntax, rather than Assembly instruction codes. Programmers are no

longer tied to a specific machine, and therefore acquire a certain auton-

omy, a recognition which culminates in the naming of the field of software

engineering (Randell, 1996).

Campbell-Kelly concludes on a wave of mass-market production: fol-

lowing the advent of the UNIX family of operating systems, the distribu-

tion of the C programming language, the wide availability of C compilers,

and the appearance of personal computers such as the Commodore 64,

Altair and Apple II, software could be effectively entirely decoupled from

hardware. The writing of software is no longer a corollary to the design

of hardware, and as an independent field would as such become the main

focus of computing as a whole (Ceruzzi, 2003). And yet, software immedi-

ately enters a crisis, where projects run over time and budget, prove to be

unreliable in production and unmaintainable in the long-run. It is at this

time that discussions around best practices in writing source code started

to emerge.

This need for amore formal approach to the actual process of program-

ming found one of its most important manifestations in Edsger Dijkstra’s

Notes on Structured Programming (Dijkstra, 1972). In it, he argues for mov-

ing away from programming as a craft, and towards programming as an

organized discipline, with its methodologies and systematization of pro-

programmer derived an immense intellectual satisfaction from the cunning tricks by means of

which he contrived to squeeze the impossible into the constraints of his equipment. (Dijkstra,

2007)

51

gram construction. Despite its laconic section titles4, Dijkstra’s 1972 re-

port nonetheless contributed to establish a more rigorous typology of the

constructs required for reliable, provable programs—based on fundamen-

tal heuristics such as sequencing, selection, iteration and recursion—, and

aimed at the formalization of the practice. Along with other subsequent

developments (such as Hoare’s contribution on proper data structuring

(Hoare, 1972), or the rise of object-oriented programming with Smalltalk

(Kay, 1993)) programming would solidify its foundations as a profession:

We knew how the nonprofessional programmer could write in

an afternoon a three-page program that was supposed to sat-

isfy his needs, but how would the professional programmer de-

sign a thirty-page program in such a way that he could really jus-

tify his design? What intellectual discipline would be needed?

What properties could such a professional programmer demand

with justification from his programming language, from the for-

mal tool he had to work with? (Dijkstra, 1972)

As a result of such interrogations comes an industry-wide search for so-

lutions to the intractable problem of programming: that it is a technique to

manage information which in turn produces information. To address such a

conundrum, a variety of tools, formalmethods andmanagement processes

enter themarket; they aimat acting as a silver bullet (Brooks Jr, 1975), amag-

ical solution addressing the cascade of potential risks which emerge from

large software applications5. This growth in complexity is also accompa-

nied by a diversification of software applications: as computers become

more widely available, and as higher-level programming languages pro-

vide more flexibility in their expressive abilities, software engineering en-

gages with a variety of domains, each of which might need a specific solu-

4See, for instance, Chapter 1: ”On our inability to do much”
5For instance, the Forum on Risks to the Public in Computers and Related Systems serves

as a publication to centralize such concerns (Neumann, 1985)

52

tion, rather than a generic process. Confrontedwith this diversity of appli-

cations, business literature on software practices flourishes, being based

on the assumption that the complexity of software should be tackled at its

bottleneck: the reading and writing of source code.

The most recent wave in the history of software developers is the pop-

ularization of the Internet and of the World Wide Web, a network which

was only standardized in 1982 and access to it was provided commercially

in 1989. Built on top of the Internet, it popularized global information ex-

change, including technical resources to read and write code. Software

could now be written on cloud computing platforms, shared through pub-

lic repositories and deployed via containers with a lower barrier to entry

than at a time of source code printed inmagazines, of overnight batch pro-

cessing and of non-time-sharing systems.

Engineering texts

Software developers have written some of the largest program texts to this

date. However, due to its close ties to commercial distributors, source code

written in this context often falls under the umbrella of proprietary soft-

ware, thus made unavailable to the public. The program texts written by

software developers are large, they often feature multiple programming

languages and are highly structured and standardized: each file follows a

pre-established convention in programming style, which supports an au-

thoring bymultiple programmers without any obvious trace to a single in-

dividual authorship. These program texts stand the closest to a program-

ming equivalent of engineering, with its formalisms, standards, usability

and attention to function.

The IEEE’s Software Engineering Body of Knoweldge (SWEBOK) pro-

vides a good starting point to survey the specificities of software develop-

ers as source code writers and readers (Bourque & Fairley, 2014); the main

features of which include the definition of requirements, design, construc-

53

tion, testing and maintenance. Software requirements are the acknowl-

edgement of the importance of the problem domain, the domain to which

the software takes its inputs from, and to which it applies its outputs. For

instance, softwarewritten for a calculator has arithmetic as its problemdo-

main; software written for a learning management system has students,

faculty, education and courses as its problem domain; software written

a banking institution has financial transactions, savings accounts, fraud

prevention and credit lines as its problem domain. This essential step in

software development aims at formalizing as best as possible the elements

that exist beyond software, in order to make those computable, and the

design of an adequate formalism is a fundamental requirement for a suc-

cessful software application.

Software design relates to the overall organization of the software com-

ponents, considered not in their textual implementation, but in their con-

ceptual agency. Usually represented through diagrams or modelling lan-

guages, it is concerned with understanding how a system should be orga-

nized and designing the overall structure of that system (Sommerville, 2010).

Of particular interest is the relationship that is established between soft-

ware development and software architecture. Software architecture oper-

ates both from a top-down perspective, laying down an abstract blueprint

for the implementation of a system and dictating how a program text is

structured, how its parts interact, why it’s built that way, consisting differ-

ent components of an existing system interact (Brown &Wilson, 2011).

Software construction relates to the actualwriting of software, andhow

to do so in the most reliable way possible. The SWEBOK emphasizes first

and foremost the need to minimize complexity6, in anticipation of likely

changes and possible reuse by other software systems. Here, the empha-

6Complexity does not exist only at the programming level, but also at the architecture

level: ”there are two ways of constructing a software design: one way is to make it so simple

that there are obviously no deficiencies, and the other way is to make it so complicated that

there are no obvious deficiencies.” (Hoare, 1981)

54

sis on engineering is particularly salient: while most would refer to the

creation of software as writing software, the IEEE document refers to it as

constructing software: the creation of working software through a combi-

nation of coding, verification, unit testing, integration testing, and debug-

ging. (Bourque&Fairley, 2014). The practice of software engineers thus im-

plements functional and reliable mechanical designs through, ultimately,

the act of writing in formal languages.

Software maintenance, finally, relates not to the planning or writing of

software, but to its reading. Software is notoriously filledwith bugs7which

can be fixed through the release of software updates. This means that the

life of a software doesn’t stop when its first version is written, but rather

when it does not run anywhere anymore: it can still be edited across time

and space, by other programmers whichmight not have access to the orig-

inal group of implementers: consequently, software should be first and

foremost understandable—SWEBOK lists the first feature of coding as be-

ing techniques for creating understandable source code (Bourque & Fairley,

2014). This final component of software development directs us back to

its notorious cognitive complexity, one that increases with the age of the

software.

What does this look like in practice? In order to understand the aes-

thetic preferences of software developers, we must start by assessing the

kinds of program texts they write. We look at excerpts from two code

bases: the source code for Microsoft Windows XP, which was started in

2001 (Warren, 2020), and the Kirby CMS project, started in 2011; the quan-

titative specificities of both code bases are shown in 2.1. While these two

projects differ drastically in their size, in their age, and in the number of

developers involved in their creation and maintenance, we nonetheless

choose them as the respective ends of a single spectrum of software en-

gineering. In both cases, the prime concern is with function andmaintain-

7McConnell estimates that the industry average is about 15 - 50 errors per 1000 lines of

delivered code. (McConnell, 2004).

55

Figure 2.1: Table comparing the scale of two software development

projects.

ability.

First, themost striking visual feature of the code is its sheer size. In the

case of Microsoft XP, representing such a versatile and low-level applica-

tion such as an operating system results in files that are often above 2000

lines of code. In order to allow abstraction techniques at a higher-level for

the end-developer, the operating system needs to do a significant amount

of ”grunt” work, relating directly to the concrete reality of the hardware

platform which needs to be operated on. Looking at the file cmdatini.c, re-

produced partially in 4, we see very long variable names, with a rhythmic,

repetitive structure where differences between lines is not obivous at first.

The repetition of the RtlInitUnicodeString in the first part of this listing

stands at odds with the second part of the code, the for() statement, dis-

playing a contrast between between a verbose text and a compressed text.

Verbosity, the act of explicitly writing out statements which could be func-

tionally equivalent in a compacted form, is a feature of the Windows 2000

codebase, one which is a consequence of a particular problem domain, of

a particular business imperative of maintainability, and of the particular

semantic environment of the C programming language.

The problemdomain of theWindowsXPoperating system, its longevity

and its update cycle, all contribute to its complexity and have affected how

this code is written. Here, the problem domain of the program text is the

computer hardware, and its function is to make sure the kernel knows

about the hardware it is running on (e.g. its name, its description, etc.), in

56

{
ULONG i;

RtlInitUnicodeString(&CmRegistryRootName,
CmpRegistryRootString);

RtlInitUnicodeString(&CmRegistryMachineName,
CmpRegistryMachineString);

RtlInitUnicodeString(&CmRegistryMachineHardwareName,
CmpRegistryMachineHardwareString);

RtlInitUnicodeString(&CmRegistryMachineHardwareDescriptionName,
CmpRegistryMachineHardwareDescriptionString);

RtlInitUnicodeString(&CmRegistryMachineHardwareDescriptionSystemN ⌋
ame,↪→

CmpRegistryMachineHardwareDescriptionSystemS ⌋
tring);↪→

RtlInitUnicodeString(&CmRegistryMachineHardwareDeviceMapName,
CmpRegistryMachineHardwareDeviceMapString);

RtlInitUnicodeString(&CmRegistryMachineHardwareResourceMapName,
CmpRegistryMachineHardwareResourceMapString);

// ...

//
// Initialize the type names for the hardware tree.
//

for (i = 0; i <= MaximumType; i++)
{

RtlInitUnicodeString(&(CmTypeName[i]),
CmTypeString[i]);

}

// ...

return;
}

Listing 4: Unicode string initialization inMicrosoft 2000 operating system,

with a first part showing an explicit repeating pattern, while the second

part shows a more compressed approach.

57

an explicit and verbose way, before more compressed writing techniques

can be used. Dealing with a specific problem domain (i.e. kernel instruc-

tions) leads to a specific kind of aesthetics; here, forcing the programmers

to repeat references to RtlInitUnicodeString() 1580 times across 336 files.

Another significant aesthetic feature of theWindows 2000program text

is its use of comments, and how those comments point to a collaborative,

layered authorship. This particular program text is written across individ-

uals and across time, each with presumably its own approach. Yet, writing

source code within a formal organization often implies the harmonization

of individual approaches, and thus the adoption of coding styles, with the

intent that all code in any code-base should look like a single person typed

it, no matter how many people contributed (Waldron, 2020). The excerpt in

5 from jdhuff.c is a example of such overlapping of styles.

Comments are specific lines of source code, identified by particular

characters (in the C programming language, they are marked using // and

/* */), which are ignored by the machine. That is, they are only expected

to be read by other programmers, and in this case primarily by program-

mers belonging to a single business organization. Here, the variety of com-

ment characters and the variety of capitalizationhint at the various origins

of the authors, or at the very least at the different moments, and possible

mental states of the potential single-author.

Treated as natural language, comments are not procedurally guaran-

teed to be reflected in the execution, of the program, and are considered by

some as misleading: they might be saying something, while the code does

something else8. Beyond the presence of multiple authors, this excerpt

also exemplifies the tension between source code as the canonical source

of knowledge of what the program does and how it does it and comments

as a more idiosyncratic dimension of all natural-language expressions of

8This has led to the argument that only the source code has epistemological value in a

software project: ”the only document that describes your code completely and correctly is the

code itself” (Goodliffe, 2007)

58

no_more_data :
// There should be enough bits still left in the data segment;
// if so, just break out of the outer while loop.
if (bits_left >= nbits) break;

/* Uh-oh. Report corrupted data to user and stuff zeroes into
* the data stream, so that we can produce some kind of image.
* Note that this code will be repeated for each byte demanded
* for the rest of the segment. We use a nonvolatile flag to ensure
* that only one warning message appears.
*/
if (!*(state->printed_eod_ptr))
{

WARNMS(state->cinfo, JWRN_HIT_MARKER);
*(state->printed_eod_ptr) = TRUE;

}
c = 0; // insert a zero byte into bit buffer
}
}

/* OK, load c into get_buffer */
get_buffer = (get_buffer << 8) | c;
bits_left += 8;
}

/* Unload the local registers */
state->next_input_byte = next_input_byte;
state->bytes_in_buffer = bytes_in_buffer;
state->get_buffer = get_buffer;
state->bits_left = bits_left;

return TRUE;
}

Listing 5: Overlapping programming voices can be hinted at by different

comment styles.

59

/*++

Copyright (c) 1996 Microsoft Corporation

Module Name:

enum.c

Abstract:

This module contains routines to perform device enumeration

Author:

Shie-Lin Tzong (shielint) Sept. 5, 1996.

Revision History:

James Cavalaris (t-jcaval) July 29, 1997.
Added IopProcessCriticalDeviceRoutine.

--*/

Listing 6: pnpenum.c shows the explicit traces of multiple authors collab-

orating on a single file over time.

human programmers.

And yet, this chronological and interpersonal spread of the program

text, combinedwith organizational practices, require the use of comments

in order to maintain aesthetic and cognitive coherence in the program.

This is the case in the use of comment headers, which locate a specific file

within the greater architectural organization of the program text (see 6).

This highlights the multiple authors and the evolution in time of the file:

comments are the only manifestation of this layering of revisions which

ultimately results in the ”final” software9.

Ultimately, the Windows XP source code shows some of the compo-

nents at stake in the program texts written by software developers: ver-

bosity and compression, multi-auctoriality, and natural language writing

9The term ”final” is in quotes, since the Windows 2000 source contains the mention

BUGBUG 7436 times across 2263 files, a testament to the constant state of unfinishedness that

software tends to remain in.

60

in the midst of formal languages. Still, as an operating system developed

by one of the largest corporations in the world, it also possesses some

specificities due to its problem domain, programming language and socio-

economic environment.

Another example of a program text written by software developers,

complementing Windows XP, is the Kirby CMS (Allgeier, 2022). With de-

velopment starting in 2011 and a first release in 2012, it developed a steady

community of susers, shown in consistent forum posts and commit his-

tory on the main repository. Kirby is open-source, meaning that it affords

direct engagement of other developers with its architecture through mod-

ification, extension or partial replacement, content management system.

Its problem domain is therefore the organization of user-facing multime-

dia assets, such as text, images and videos.

The Kirby source code is entirely available online, and the following

snippets hint at another set of formal values—conciseness, expliciteness

and delimitation. Conciseness can be seen in the lengths of the various

components of the code base. For instance, the core of Kirby consists in

1859 files, with the longest being src/Database/Query.php at 1065 lines, and

the shortest being src/Http/Exceptions/NextRouteException.php at 16 lines,

for an average of 250 lines per file 10.

If we look at a typical function declaration within Kirby, we found one

such as the distinct() setter for Kirby’s database, reproduced in 7. This

function allows the developer to set whether she only wants to select dis-

tinct fields in a database query.

Out of these 11 lines, the actual functionality of the function is focused

on one line, $this->distinct = $distinct;. Around it are machine-readable

comment snippets, and a functionwrapper around the simple variable set-

ting. The textual overhead then comes from thewrapping itself: the actual

10As a comparison, the leading project in the field, Wordpress.org, has 3466 files, with the

longest file comprising 9353 lines of code (customize-controls.js), and the shortest 1line

(such as script-loader-packages.php) (Wordpress, 2023)

61

/**
* Enables distinct select clauses.
*
* @param bool $distinct
* @return \Kirby\Database\Query
*/
public function distinct(bool $distinct = true)
{

$this->distinct = $distinct;
return $this;

}

Listing 7: The setting of whether a query should be distinct includes some

verbose details which prove to be helpful in the long run (Allgeier, 2021b).

semantic task of deciding whether a query should be able to include dis-

tinct select clauses (as opposed to only allowing join clauses), is now de-

coupled from its actual implementation. The quality of this writing, at first

verbose, actually lies in its conciseness in relation to the possibilities for

extension that sucha formofwriting allows: the distinct() function could,

under other circumstances, be implemented differently, and still behave

similarly from the perspective of the rest of the program. Additionally,

this wrapping enables the setting of default values (here, true), a minimal

way to catch bugs by always providing a fallback case.

Kirby’s source code is also interestingly explicit in comments, and suc-

cint in code. Taking from the Http\\Route class, reproduced in 8, we can

see a different approach to comments than in 5 of Microsoft XP operating

system.

The 9 lines above the function declaration are machine-readable docu-

mentation. It can be parsed by a programmatic system and used as input

to generate more classical, human-readable documentation in the form

of a website or a printed document. This is noticeable due to the highly

formalized syntax param string name_of_var, rather than writing out ”this

function takes a parameter of type string named name_of_var”. This does

compensate for the tendency of comments to drift out of synchronicity

62

/**
* Tries to match the path with the regular expression and
* extracts all arguments for the Route action
*
* @param string $pattern
* @param string $path
* @return array|false
*/
public function parse(string $pattern, string $path)
{

// check for direct matches
if ($pattern === $path) {

return $this->arguments = [];
}

// We only need to check routes with regular expression since all
others↪→

// would have been able to be matched by the search for literal
matches↪→

// we just did before we started searching.
if (strpos($pattern, '(') === false) {

return false;
}

// If we have a match we'll return all results
// from the preg without the full first match.
if (preg_match('#^' . $this->regex($pattern) . '$#u', $path,

$parameters)) {↪→

return $this->arguments = array_slice($parameters, 1);
}

return false;
}

Listing 8: The inclusion of comments help guide a programmer through an

open-source project (Allgeier, 2021c).

63

with the code that they are supposed to comment, by tying them back to

some computational system to verify its semantic contents, while provid-

ing information about the inputs and outputs of the function. Once again,

we see that the source of truth is the computer’s ability of reading input

and executing it.

Beyond expliciting inputs and outputs, the second aspect of these com-

ments is targeted at the how of the function, helping the reader understand

the rationale behind the programmatic process. Comments here aren’t

cautionary notes on specific edge-cases, as seen in 8, or on generic meta-

information, but rather natural language renderings of the thought pro-

cess of the programmer. The implication here is to provide a broader, and

more explicit understanding of the process of the function, in order to al-

low for further maintenance, extension or modification.

Finally, we look at a subset of the function, the clause of the third

if-statement: (preg_match('#^' . $this->regex($pattern). '$#u', $path,

$parameters)). Without comments, one must realize on cognitive gymnas-

tics and knowledge of the PHP syntax in order to render this as an extrac-

tion of all route parameters, implying the removal of the first element of

the array. In this sense, then, Kirby’s code for parsing anHTTP route is both

verbose in comments andparsimonious in code. The reason for those com-

ments becomes clear: that the small core of the function is actually hard

to understand.

Looking at some excerpts from the Kirby program texts, we see a small

number of files, overall short file length, short function length, consis-

tent natural language comments and concise functionality. These aes-

thetic features give an impression of building blocks: short, graspable, (re-

)usable components are made available to the developer directly, as the

open-source project relies on contributions from individuals who are not

expected to have any other encounter with the project other than, at the

bare minimum, the source code itself.

In conclusion, these two examples of program texts written by soft-

64

// fall back to little execCommand hack with a temporary textarea
const input = document.createElement(”textarea”);
input.value = value;
document.body.append(input);

Listing 9: Even in a productive and efficient open-source project, one can

detect traces of ”hacks” (Allgeier, 2021a).

ware developers, Microsoft Windows XP and Kirby CMS, show particular

presentations of source code—such as repetition, verbosity, commenting

and conciseness. These are in part tied to their socio-technical ecosys-

tems made up of hardware, institutional practices ranging from corporate

guidelines to open-source contribution, with efficiency and usability re-

maining at the forefront, at least in its executed form.

Indeed, software developers are a large group of practitionerswhose fo-

cus is on producing effective, reliable and sustainable software. This leads

them towriting in a relatively codifiedmanner. And yet, wemust acknowl-

edge that idiosyncracies in source code emerge; in 9, a function handling

text input uses a convoluted workaround to store text data. Even in busi-

ness environments and functional tools, then, the hack is never too far.

The boundary between groups of practitioners is not clear-cut, and so we

now turn to the correlated practice of hackers.

2.1.2 Hackers

To hack, in the broadest sense, is to enthusiastically inquire about the pos-

sibilities of exploitation of technical systems11. Computer hacking specifi-

cally came to proeminence as early computers started to become available

11”HACKER [originally, someone who makes furniture with an axe] n. 1. A person who

enjoys learning the details of programming systems and how to stretch their capabilities, as

opposed tomost userswhoprefer to learnonly theminimumnecessary. 2. Onewhoprograms

enthusiastically, orwho enjoys programming rather than just theorizing about programming.

(Dourish, 1988)

65

in north-american universities, and coalesced around the Massachussets

Institute of Technology’s TechModel RailroadClub (Levy, 2010). Computer

hackerswere at the time skilled and highly-passionate individuals, with an

autotelic inclination to computer systems: these systems mattered most

when they referenced themselves, instead of interfacingwith a given prob-

lem domain. Early hackers were often self-taught, learning to tinker with

computers while still in high-school (Lammers, 1986), and as such tend to

exhibit a radical position towards expertise: skill and knowledge aren’t de-

rived from academic degrees or credentials, but rather from concrete abil-

ity and practical efficacy12.

The histories of hacking and of software development are deeply in-

tertwined: some of the early hackers worked on software engineering

projects—such as the graduate students who wrote the Apollo Guidance

Computer routines under Margaret Hamilton—and then went on to pro-

foundly shape computer infrastructure. Particularly, the development of

the UNIX operating system by Dennis Ritchie and Ken Thompson is a key

link in connecting hacker practices andprofessional ones. Developed from

1969 at Bell Labs, AT&T’s research division, UNIXwas a product at the inter-

section of corporate and hacker culture, built by a small team, circulating

along more or less legal channels, and spreading its design philosophy of

clear, modular, simple and transparent design across programming com-

munities (Raymond, 2003).

Hacker culture built on this impetus to share source code, and hence to

make written software understandable from its textual manifestation. As

hardware stopped being the most important component of a computing

system to software had ledmanufacturers to stop distributing source code,

making proprietary software the norm. Until then, executable software

was the consequence of running the source code through a compilation

process; around the 1980s, executable software was distributed directly as

a binary file, its exact contents an unreadable series of 0s and 1s.
12Ameritocratic stance which has been analyzed in further in (Coleman, 2018)

66

In the meantime, personal microcomputers came to the market and

opened up this ability to tinker and explore computer systems beyond

the realms of academic-licensed large mainframes and operating systems.

Starting with models such as the Altair 8800, the Apple II and the Com-

modore 64, as well as with easier, interpreted computer languages such as

BASIC, whose first version for such micro-computers was written by Bill

Gates, Paul Allen and Monte Davidoff (Montfort et al., 2014). While seem-

ingly falling out of the realm of ”proper” programming, themicrocomputer

revolution allowed for new groups of individuals to explore the interactiv-

ity of source codedue to their small sizewhenpublished as type-in listings.

In the wake of the larger free software movement, emerged its less rad-

ical counterpart, the open-source movement, as well as its more illegal

counterpart, security hacking. The latter is usually represented by the

types of individuals depicted inmainstream news outlets when they refer-

ence hackers: programmers breaching private systems, sometimes in or-

der to cause financial, intelligence or material harm. Security hackers,

sometimes called crackers, form a community of practice of their own,

with ideas of superior intelligence, subversion, adventure and stealth13.

These practices nonetheless refer to the original conception of hacking—

getting something done quickly, and well—and include such a practical,

efficient appoach into its own set of values and ideals. In turn, these are

represented in the kinds of program texts beingwritten bymembers of this

community of practice.

Meanwhile, the open-source movement took the tenets of hacking cul-

ture and adapted it to make it more compatible to the requirements of

businesses. Indeed, beyond the broad values of intellectual curiosity and

13For a lyrical account of this perception of the hacker ethos, see The Conscience of a

Hacker, published in Phrack Magazine: ”This is our world now… the world of the electron

and the switch, the beauty of the baud. We make use of a service already existing without

paying for what could be dirt-cheap if it wasn’t run by profiteering gluttons, and you call us

criminals. We explore… and you call us criminals. We seek after knowledge… and you call us

criminals.” (Mentor+++, 1986)

67

skillful exploration, free software projects such as the Linux kernel, the

Apache server or the OpenSSL project have proven to be highly efficient,

and used in both commercial, non-commercial, critical and non-critical

environments (Raymond, 2001). Such an approach sidesteps the political

and ethical values held in previous iterations of the hacker ethos in order

to focus exclusively on the sharing of source code and open collaboration

while remainingwithin an inquisitive andproductivemindframe. With the

advent of corporate hackathons—short instances of intense collaboration

in order to create new software, or new features on a software system—are

a particularly salient example of this overlap between industry practices

and hacker practices (Nolte et al., 2018)14.

As a community of practice, hackers are programmers which, while

overlapping with industry-embedded software developers, hold a set of

values and ideals regarding the purpose and state of software. Whether

academic hackers, amateurs, security hackers or open-source contribu-

tors, all are centered around the object of source code as a vehicle for com-

municating the knowledge held within the software, the necessity of skill

for writing such software, and a certain inclination towards ”quick and

dirty” solutions.

Program texts as puzzles

Incidentally, those political and ethical values of expertise and openness

often overlap with aesthetic values informing how their code exists in its

textual manifestation. By looking at a few program texts written by hack-

ers, we will see how their skillful engagment with the machine, and their

playful stances towards solving problems is also reflected in how they

write source code.

To hack is, according to the dictionary, ”to cut irregularly, with-

14Another overlap can be found in the address of the software corporate giantMeta’s head-

quarters: 1, Hacker Way, Menlo Park, CA 94025, U.S.A.

68

out skill or definite purpose; to mangle by or as if by repeated

strokes of a cutting instrument”. I have already said that the com-

pulsive programmer, or hacker as he calls himself, is usually a su-

perb technician. It seems therefore that he is not ”without skill”

as the definition will have it. But the definition fits in the deeper

sense that the hacker is ”without definite purpose”: he cannot set

before hima clearly defined long-term goal and a plan for achiev-

ing it, for he has only technique, not knowledge. He has nothing

he can analyze or synthesize; in short, he has nothing to form the-

ories about. His skill is therefore aimless, even disembodied. It is

simply not connectedwith anything other than the instrument on

which it may be exercised. His skill is that of a monastic copyist

who, though illiterate, is a first rate calligrapher. (Weizenbaum,

1976)

Weizenbaum’s perspective is that of a computer scientist whose the-

oretical work can be achieved only through thought, pen and paper. As

such, he looks down on hackers as experts who can get lost in technol-

ogy for its own sake. Gabriella Coleman, in her anthropological study of

hackers, highlights that they value both semantic ingenuity15 and techni-

cal wittiness(Coleman, 2012). Source codewritten by hackers can takemul-

tiple shapes, from one-liners, to machine language magic and subversion

of best practices in crucial moments.

The one-liner is a piece of source codewhich fits on one line, and is usu-

ally intepreted immediately by the operating system. They are terse, con-

cise, and eminently functional: they accomplish one task, and one task

only. This binary requirement of efficiency finds a parallel in a different

kind of one-liners, the jokes of stand-up comedy. In this context, the one-

liner also exhibits the features of conciseness and impact, with the setup

15Hackers themselves tend to favor puns—the free software GNU project is a recursive

acronym for GNU’s Not UNIX.

69

#include <stdio.h>
#include <strings.h>

int main(void){
char line[1000], line2[1000];
char *p;
double mag;

while(fgets(line, sizeof(line), stdin) != NULL) {
strcpy(line2, line);
p = strtok(line, ”\\t”);
p = strtok(NULL, ”\\t”);
p = strtok(NULL, ”\\t”);
sscanf(p, ”\%lf”, &mag);
if(mag > 6) /* $3 > 6 */
printf(”\%s”, line2);

}

return 0
}

Listing 10: This program text selects all the lines from an input filewhich is

longer than 6 characters in the C programming language. See the one-line

alternative implementation in 11.

conflated with the punch line, within the same sentence. One-liners are

therefore self-contained, whole semantic statements which, through this

syntactic compression, appear to be clever. In order to understand how

compression occurs in program texts, we can look at the difference be-

tween 10 and 11. Both of these have the same functionality: they select all

the lines of a given input file.

In 10, achieving this functionality using the C programming language

takes 20 lines. The equivalent in the AWK scripting language takes a single

line, a line which the author actually refers to in a comment in 10, presum-

ably as a personal heuristic as he is writing the function. The difference

is obvious, not just in terms of formal clarity and reduction of the surface

structure, but also in terms ofmatching the problemdomain: this says that

it prints every line in which the third field is greater than 6, and is easier to

read, even for non-expert programmers. The AWK one-liner is more effi-

70

awk '$3 > 6' data.txt

Listing 11: This program text selects all the lines from an input file which is

longer than 6 characters in the C programming language, in just one line

of code. See the alternative implementation in 20 lines of code in 10.

cient, more understandable because it allows for less confusion while also

reducing the amount of text necessary, and is therefore considered more

beautiful.

In programming, one-liners have their roots in the philosophy of the

UNIX operating system, as well as in the early diffusion of computer pro-

grams for personal computer hobbyists (Montfort et al., 2014). On the one

side, the Unix philosophy is fundamentally about building simple tools,

which all do one thingwell, in order tomanipulate text streams (Raymond,

2003), and each of these tools can then be composed in order to produce

complex results—a feature of programming languages we will discuss in

5.1.1. Sometimes openly acknowledged by language designers—such as

those of AWK—the goal is to write short programs which shouldn’t be

longer thanone line. Given that constraint, a hacker’s responsewould then

be: how short can you make it?

Writing the shortest of all programs does become a matter of skill and

competiton, coupled with a compulsivity to reach the most syntactically

compressed version16. This behaviour is also manifested in the practice

of code golf, challenges in which programmers must solve problems by

16For instance, Guy Steele, and influential langugage designer, who worked on Scheme,

ECMAScript and Java, among others, recalls:”This may seem like a terrible waste of my effort,

but one of themost satisfyingmoments of my career was when I realized that I had found a way

to shave oneword off an 11-word program that [Bill] Gosper hadwritten. It was at the expense of

a very small amount of execution time, measured in fractions of a machine cycle, but I actually

found a way to shorten his code by 1 word and it had only taken me 20 years to do it.” (Seibel,

2009)

71

life ← {⊃1 ⍵ ∨.∧ 3 4 = +/ +⌿ ¯1 0 1 ∘.⊖ ¯1 0 1 ⌽¨ ⊂⍵}

Listing 12: Conway’s Game of Life implemented in APL is a remarkable ex-

ample of conciseness, at the expanse of readability.

using the least possible amount of character17, or in contests such as the

MathematicaOne-Liner Competition (Carlson, 2010). Minimizing program

length in relation to the problem complexity is therefore a definite feature

of one-liners, since choosing the right programming language for the right

tasks can lead to a drastic reduction of syntax, while keeping the same ex-

pressive and effective power.

On the other hand, however, one-liners can be so condensed that they

loose all sense of clarity for a reader who does not have a deep knowledge

of the language in which it is written, or of the problem being solved. For

instance, 12 is an implementation of Conway’s game of life implemented in

one line of the APL programming. Conway’s Game of Life is a well-known

simulation where a small set of initial conditions and rules for evolution

produce unexpected emergent complexity. Its combination with APL pro-

gramming language, which makes an extensive use of symbolic graphical

characters to denote functions and operations, leads to particularly dense

and terse source code.

This particular example shows why one-liners are usually highly dis-

couraged for any sort of code which needs to be worked on by other pro-

grammers. Cleverness in programming tends to be seen as a display of

the relationship between the programmer, the language and the machine,

rather than between different programmers. On the other hand, the small

nature of one-liners makes them highly portable and shareable. Popular

with early personal computer adopters, at a time during which the source

code of programs were printed in hobbyist magazines and needed to be

17Here, the equivalent of par in golf would be the number of character used: the lower the

number, the better.

72

float Q_rsqrt(float number)
{

long i;
float x2, y;
const float threehalfs = 1.5F;

x2 = number * 0.5F;
y = number;
i = *(long *)&y; // evil floating point bit level

hacking↪→

i = 0x5f3759df - (i >> 1); // what the fuck?
y = *(float *)&i;
y = y * (threehalfs - (x2 * y * y)); // 1st iteration

// y = y * (threehalfs -
(x2 * y * y)); //
2nd iteration,

↪→

↪→

// this can be removed

return y;
}

Listing 13: This particular implementation of a function calculating the in-

verse square root of a number has become known in programming circles

for both its speed and unscrutability.

input by hand, and during which access to computation wasn’t widely dis-

tributed amongst society, being able to type just one line in a computer

program, and resulting in unexpected graphical patterns created a sense

of magic and wonder in first-time users18, surprised by how so little can do

so much (Montfort et al., 2014).

Another quality of hacker code is the idiosyncratic solution to an intri-

cate puzzle. The listing in 13 calculates the inverse square root of a given

number, a routine but computationally expensive calculation need in com-

puter graphics. It was found in the source code of id Software’s Quake

video game19.

What we see here is a combination of the understanding of the prob-

18The visual output of one of these one-liners can be seen at https://www.youtube.

com/watch?v=0yKwJJw6Abs.
19The Quake developers aren’t the authors of that function—the merit of which goes to

Greg Walsh—but are very much the authors of the comments.

73

https://www.youtube.com/watch?v=0yKwJJw6Abs
https://www.youtube.com/watch?v=0yKwJJw6Abs

lemdomain (i.e. the acceptable result needed tomaintain a high-framerate

with complex graphics), the specific knowledge of low-level computers op-

erations (i.e. bit-shifting of a float cast as an integer) and the snappiness

and wonder of the comments20. The use of 0x5f3759df is what program-

mers call amagic number, a literal value whose role in the code isn’t made

clearer by a descriptive variable name. Usually bad practice and highly-

discouraged, the magic number here is exactly that: it makes the magic

happen. Paradoxically, the author GregWalsh displays a very deep knowl-

edge of how IEEE standards represent floating point numbers, to the extent

that he is able to bend such standards into productive edge cases. While

it is obvious what the program text does, it is extremely difficult to under-

stand how.

This playfulness at writing things that do not dowhat it seems like they

do is another aspect of hacker culture. The Obfuscated C Code Contest,

starting in 1984, is the most popular and oldest organized production of

such code, in which programmers submit code that is functional and vi-

sually meaningful beyond the exclusive standards of well-formatted code.

Obfuscated code is a first foray into closely intertwining these separate

meanings in the source code itself, making completely opaque what the

code does, and inviting the reader to decipher it.

The source code in 14, submitted to the 1988 IOCCC21 is a procedure

which does exactly what it shows: it deals with a circle. More precisely,

it estimates the value of PI by computing its own circumference. While the

process is far from being straightforward, relying mainly on bitwise arith-

metic operations and a convoluted preprocessor definition, the result is

nonetheless very intuitive—the sameway that PI is intuitively related to PI.

The layout of the code, carefully crafted by introducing whitespace at the

necessary locations, doesn’t follow any programming practice of indenta-

20what the fuck?, indeed.
21Source: https://web.archive.org/web/20131022114748/http://www0.us.

ioccc.org/1988/westley.c

74

https://web.archive.org/web/20131022114748/http://www0.us.ioccc.org/1988/westley.c
https://web.archive.org/web/20131022114748/http://www0.us.ioccc.org/1988/westley.c

#define _ -F<00||--F-OO--;
int F=00,OO=00;main(){F_OO();printf(”%1.3f\n”,4.*-F/OO/OO);}F_OO()
{

--_-_
--_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_
--_-_

}

Listing 14: westley.c, entry to the 1988 IOCCC

tion, and would probably be useless in any other context, but nonetheless

represents another aspect of the concept behind the procedure described,

not relyingon traditional programming syntax22, but rather onan intuitive,

human-specific understanding23.

Obfuscating practices, beyond their technical necessities (for security

and efficiency), are traditionally tied to hacking practices, prominently

with one-liners (the shorter a name, the more obscure and general it be-

comes). As such, they rely on the brain-teasing process of deciphering, and

on the pleasurable, aesthetic experience of resolving and uniting two par-

allel meanings: what we see in the code, and what it does24. What we focus

on here is the aspect of obfuscationwhich playswith the different layers of

meaning: meaning to the computer, meaning to the human, and different

ways of representing and communicating this meaning (from uglifying, to

22For such a program, see for instance: https://crypto.stanford.edu/pbc/notes/

pi/code.html
23Concrete poetry also makes such a use of visual cues in traditional literary works.
24Also known informally as the ”Aha!” moment, crucial in puzzle design.

75

https://crypto.stanford.edu/pbc/notes/pi/code.html
https://crypto.stanford.edu/pbc/notes/pi/code.html

consistent formatting, to depicting a circle with dashes and underscores).

While the aesthetics at play in hacking will be further explored below, we

focus on the fact that obfuscating code practices, beyond hiding themean-

ing and the intent of the program, also manifest an attempt to represent

such a meaning in different ways, leaving aside traditional code-writing

practices and suggesting the meaning of the program by challenging the

abilities of human interpretation at play in the process of deciphering pro-

grams.

Building on the fact that source code very often does not do what one

thinks it does when executed, initiatives such as the Underhanded C Code

contest have leaned to this tendency. In this contest, one ”must write C

code that is as readable, clear, innocent and straightforward as possible, and

yet it must fail to perform at its apparent function. To be more specific, it

should perform some specific underhanded task that will not be detected by

examining the source code.” (Craver, 2015). Hackers find value in this kind of

paradigm-shifting: if software developers spend time attempting to make

faulty, complex code easy to grasp and reliable, hackerswould rather spend

effort and skill making faulty code look deliberately functional.

Such intimate knowledge of both the language and the machine can

be found in the program texts of the demoscene. Starting in Europe in

the 1980s, demos were first short audio-visual programs which were dis-

tributed along with crackware (pirated software), and to which the names

of the people having cracked the software were prepended, in the form of

a short animation (Reunanen, 2010). Due to this very concrete constraint—

there was only somuchmemory left on a pirated disk to fit such a demo—

programmers had to work with these limitations in order to produce the

most awe-inspiring graphics effects before software boot. One notable fea-

ture of the demoscene is that the output should be as impressive as pos-

sible, as an immediate, phenomenological appreciation of the code which

could make this happen, within a fixed technical constraint25. Indeed, the
25For an example, see Elevated, programmed by iq, for a total program size of 4 kilobytes:

76

comp.sys.ibm.pc.demos news group states in their FAQ:

ADemo is a program that displays a sound,music, and light show,

usually in 3D. Demos are very fun to watch, because they seem-

ingly do things that aren’t possible on themachine they were pro-

grammed on.

Essentially, demos ”show off”. They do so in usually one, two, or

all three of three following methods:

• They show off the computer’s hardware abilities (3D objects,

multi-channel sound, etc.)

• They show off the creative abilities of the demo group

(artists, musicians)

• They show off the programmer’s abilities (fast 3D shaded

polygons, complex motion, etc.)

(Melik, 2012)

This showing off, however, does not happen through immediate en-

gagement with the code from the reader’s part, but rather in the thor-

ough explanation of the minute functionalities of the demo by its writer.

Because of these constraints of size, the demos are usually written in

C, openGL, Assembly, or the native language of the targeted hardware.

Source code listings of demos also make extensive use of shortcuts and

tricks, and little attention is paid to whether or not other humans would

directly read the source—the only intended recipient is a very specific ma-

chine (e.g. Commodore 64, Amiga VCS, etc.). The release of demos, usually

in demoparties, are sometimes accompanied by documentation, write-ups

or presentations. However, this presentation format acknowledges a kind

of individual, artistic feat, rather than a collaborative, explicit text which

tends to be preferred by software developers.

https://www.youtube.com/watch?v=jB0vBmiTr6o, winner of the 1st place at the Break-

point 2009 contest.

77

https://www.youtube.com/watch?v=jB0vBmiTr6o

Figure 2.2: The annotated representationof the compiled versionofAMind

Is Born, a demo by Linus Åkesson. The different color overlays highlight

the meaningful regions of the program (Akesson, 2017).

Pushing the boundaries of howmuch can be done in how little code, 2.2

shows a 256-bytes demo resulting in a minute-long music video (Akesson,

2017) on the Commodore 64. It is first listed as a hexademical dump by its

author, without the original Assembly code26.

As a display of knowledge, the author highlights how different hex-

adecimal notations represent different parts of the software. Along with

knowledge of how hexadecimal instructions map to the instruction set of

the specific chip of of the Commodore 64 (in this case, the SID 8580), the

practical use of these instructions takes productive advantage of ambiva-

26The Assembly version of the source was subsequently re-assembled by J.B. Langston

(Langston, 2017), for study purposes.

78

lence and side-effects27.

Demosceners therefore tend to write beautiful, deliberate code which

is hardly understandable by other programmers without explanation, and

yet hand-optimized for the machine. In addition to software developers’

attempts tomake intelligible via their source code, this practice adds a per-

spective on the relationship between aesthetics and understanding. Here,

aesthetics do not support and enable understanding, but rather become a

proof of the mastery and skill involved in crafting such a concise input for

such an overwhelming output; it hints that one needs a degree of expert

knowledge in order to appreciate these kinds of program texts.

Hackers are therefore programmers who write code within a variety of

settings, from academia to hobbyists through professional software devel-

opment, with an explicit focus on knowledge and skill. Yet, some patterns

emerge. First, one can see the emphasis on the ad hoc, insofar as choos-

ing the right tool for the right job is a requirement for hacker code to be

valued positively. This requirement thus involves an awareness of which

tool will be the most efficient at getting the task at hand done, with a min-

imum of effort and minimum of overhead, usually at the expense of sus-

taining ormaintaining the software beyond any immediate needs, making

it available or comprehensible neither across time nor across individuals,

a flavour of locality and technical context-sensitivity. Second, this need for

knowing and understanding one’s tools hints at a material relationship

to code, whether instructions land in actual physical memory registers,

staying away from abstraction and remaining in concrete reality by using

magicnumbers, or sacrificing semantic clarity in order to ”shaveoff” a char-

27Linus Åkesson explains how he layers functionality on the same syntactical tokens: We

need to tell the VIC chip to look for the video matrix at address $0c00 and the font at $0000.

This is done by writing $30 into the bank register ($d018). But this will be done from within the

loop, as doing so allows us to use the value $30 for two things. An important property of this

particular bank configuration is that the system stack page becomes part of the font definition.

(Akesson, 2017)

79

acter or two. Throughout, there is the recurring requirement of doing the

most with the least, of written parsimony leading to executed expansive-

ness.

Hacking therefore involves knowledge: knowledge of the hardware,

knowledgeof theprogramming languageused andknowledgeof the trade-

offs acceptable all the while exhibiting an air of playfulness. They tend to

get the job done and do it for the sake of doing it, at the expense of con-

ceptual soundness. If hacking can be considered a way of doing which

deals with the practical intricacies of programming, involving concrete

knowledge of the hardware and the language, they stand at the polar oppo-

site of another community of source code practictionners. Scientists who

write source code (of which computer scientists are a subset) engage with

progamming first and foremost at the conceptual level, with different locii

of implementation: either as a theory, or as amodel.

2.1.3 Scientists

Historically, programming emerged as a distinct practice from the com-

puting sciences: not all programmers are computer scientists, and not all

computer scientists are programmers. Nonetheless, scientists engagewith

programming and source code in distinct ways, and as such open up the

landscape of the type of code which can be written, as well as the stan-

dards which support the evaluation of formally satisfying code. First, we

will look at code being written outside of computer science research ac-

tivities and see how the specific needs of usability, replicability and data

structuring link back to standards of software development. Then, we will

turn to the code written by computer scientists and examine how ideal of

computation manifest themselves in concrete implementations.

80

Computation as ameans

Scientific computing, defined as the use of computation in order to solve

non-computer science tasks, started as early as the 1940s and 1950s in the

United States, aiding in the design of the first nuclear weapons, aerody-

namics andballistics, amongothers (Oberkampf&Roy, 2010). Calculations

necessary to the verification of theories in disciplines such as physics,

chemistry or mathematics were handed over to the computing machines

of the time for faster and more correct processing. Beyond the military

applications of early computer technology, the advent of computing tech-

nologywould prove to be of great assistance in physics and engineering, as

shown by Harlow and Fromm’s article on Computer Experiments in Fluid

Dynamics28, or the report on Man-Computer Symbiosis by J.C.R. Licklider

(Licklider, 1960).

The remaining issue is tomake computersmore accessible to scientists

who did not have direct exposure to this new technology, and therefore

might be unfamiliar to the intricacies of their use. While universities can

afford mainframe computers so that scientists do not have to wait for the

personal computer revolution, another vector for simplification and ac-

cessibility is the development of adequate programming languages. The

intent is to provide non-computer scientists with easy means to instruct

the computer on how to perform computations relevant to their work, ul-

timately aiming to situate computation as the third pillar of science, along

with theorization and experimentation (Vardi, 2010).

Such an endeavour started with the BASIC29 programming language.

Developed in 1964 at Dartmouth College, it aimed at addressing this hur-

dle by designing ”the world’s first user-friendly programming language”

(Brooks, 2019), and led the personal computer revolution by allowing non-

28”The fundamental behavior of fluids has traditionally been studied in tanks and wind tun-

nels. The capacities of the modern computer make it possible to do subtler experiments on the

computer alone.” (Harlow & Fromm, 1965)
29BASIC stands for Beginners’ All-purpose Symbolic Instruction Code.

81

X = (-3:1/8:3)*ones(49,1);
Y = X';
Z = 3*(1-X).^2.*exp(-(X.^2) - (Y+1).^2) \
- 10*(X/5 - X.^3 - Y.^5).*exp(-X.^2-Y.^2) \
- 1/3*exp(-(X+1).^2 - Y.^2);
mesh(X,Y,Z)

Listing 15: Mesh.m

technical individuals to write their own software. By the dawn of the 21ŝ

century, scientific computing had increased in the scope of its applica-

tions, extending beyond engineering and experimental, so-called ”hard”

sciences, to social sciences and the humanities. It had also incrased in the

time spent developing andusing software (Prabhu et al., 2011; Hannay et al.,

2009), with the main programming languages used being MATLAB, C/C++

and Python. While C and C++’s use can be attributed to their historical

standing, popularity amongst computer scientists, efficiency for systems

programming and speed of execution, MATLAB and Python offer different

perspectives. MATLAB, originally a matrix calculator from the 1970s, be-

came popular with the academic community by providing features such as

a reliable way to do floating-point arithmetic and a friendly graphical user

interface (GUI). Along with its powerful array-manipulation features, this

ability to visualize large series of data and plot it on a display largely con-

tributed to MATLAB’s popularity (Moler & Little, 2020). The combination

of 15 and 2.3 shows how concise the plotting of a three-dimensional plane

is in MATLAB. In the source code, it requires only one call to mesh, and the

output is a complete visual rendering, with reasonable and aesthetically

pleasing visual default settings in the form of graded axes.

Along with MATLAB, Python represents the advent of the so-called

scripting languages: programming languages which offer readability and

versatility, along with decoupling from the actual operating system that it

is being executed on. System languages, such as C, are designed to inter-

act directly with the computer hardware, and to constitute data structures

82

Figure 2.3: Visualization of a 3D-mesh in Matlab

from the ground up. On the other hand, scripting languageswere designed

and used in order to connect existing software systems or data sources

together, most notably in the early days of shell scripting (such as Bash,

sed or awk, as seen in 11) (Ousterhout, 1998). Starting with the late 1990s,

and the appearance of languages such as Perl and Python, scripting lan-

guages became more widely used by non-programmers who already had

data to work with and only needed the tools to exploiThe development of

additional scientific libraries such as SciKit, NumPy for mathematics and

numerical work or NLTK for language processing and social sciences in

Python complemented the language’s ease of use by providing manipu-

lation of complex scientific concepts (Millman & Aivazis, 2011).

This steady rise of scientific computing has nonetheless highlighted

the apparent lack of quality standards in academic software, and how the

lack of value judgments on the software written might impact the relia-

bility of the scientific output(Hatton & Roberts, 1994). Perhaps the most

well-known instance of poor standards in programming was revealed by

the leak of the source code of the Climate Research Unit from the Univer-

sity of East Anglia in 2009 (Merali, 2010). In the leak, inline comments of

83

the authors show that particular variable values were chosen to make the

simulation run, with scientific accuracy being only a secondary concern.

Code reviews of external software developers point out to the code of the

CRU leak as being a symptom of the general state of academic software30.

In response, the beginning of the 2000s has seen the desire to re-

integrate the best practices of software engineering in order to correct sci-

entific software’s lack of accuracy, resulting in the formation of communi-

ties such as the Research Software Engineers(Woolston, 2022). As we have

seen above, software engineering had developed on their own since its es-

tablishment as an independent discipline and professional field. Such a

split, described by Diane Kelly as a ”chasm” (Kelly, 2007) then had to face

the different standards to which commercial software and scientific soft-

ware were held to. For instance, commercial software must be extensible

and performant, two qualities that do not necessarily translate to an aca-

demic setting, in which software might be written within a specific, time-

constrained, research project, or in which access to computing resources

(i.e. supercomputers) might be less of a problem.

It seems that software’s position in the scientific inquiry is no longer

that of a helpful crutch, but rather of an inevitable step. Within Landau

et. al’s conception of the scientific process as the progression from prob-

lem to theory, followed by the establishment of a model, the devising of

a method, and then on to implemementation and finally to assessment

(Landau et al., 2011), code written as academic software is involved in the

latter two stages of method and implementation. As such, it has to abide

by the processes and requirements of scientific research. First and fore-

most, reproducibility is a core requirement of scientific research in general

30ProfessorDarrel Ince stated to theUKParliamentaryCommittee in February 2010: ”There

is enough evidence for us to regard a lot of scientific software with worry. For example Professor

Les Hatton, an international expert in software testing resident in the Universities of Kent and

Kingston, carried out an extensive analysis of several million lines of scientific code. He showed

that the software had an unacceptably high level of detectable inconsistencies.” (Committee,

2010)

84

and bugs in a scientific software system can lead to radically different oup-

tuts given slightly different input data, while concealing the origin of this

difference, and compromising the integrity of the research and of the re-

searcher. Good academic code, then, is one which defends actively against

these, perhaps to the expense of performance and maintainability. This

can be addressed by reliable error-handling, regular assertions of the state

of the processed data and extensive unit testing (Wilson et al., 2014).

Furthermore, a unique aspect of scientific software comes from the lack

of clear upfront requirements. Such requirements, in software develop-

ment, are usually provided ahead of the programming process, and should

be as complete as possible. As the activity of scientists is defined by an in-

complete understanding of the application domain, requirements tend to

emerge as further knowledge is developed and acquired (Segal, 2005). As

a result, efforts have been made to familiarize scientists with software de-

velopment best practices, so that they can implement quality software on

their own. Along with field-specific textbooks31 the most prominent ini-

tiative in the field is Software Carpentry, a collection of self-learning and

teaching resources which aims at implementing software best practices

across academia, for scientists and by scientists. Founded by GregWilson,

the co-editor of Beautiful Code, the organization’s title refers directly to

equivalents in the field of software development.

We see a convergence of quality standards of broad academic soft-

ware towards the quality standards of commercial software development.

Meanwhile, computer science worked towards asserting and pursuing its

own field of research, sometimes distinct from the discipline of program-

ming. Unlike other scientific fields possesses its own specific standards of

programming, taking software not as a means to an end, but as the end

itself.

31See Effective Computation in Physics (Scopatz&Huff, 2015) orAPrimer for Computational

Biology (O’Neil, 2019) covering similar software-oriented material from different academic

perspectives.

85

Computation as an end

Computer scientists are scientists whose work focuses on computation as

an object, rather than as a tool. They study the phenomenon of computa-

tion, investigating its nature and effects through the development of the-

oretical frameworks around it. Originally derived from computability the-

ory, as a branch of formal mathematical logic, computation emerged as

an autonomous field from work in mechanical design and configuration,

work on circuit and language design, work on mathematical foundations,

information theory, systems theory and expert systems, computer science

establishes its institutional grounding with the inauguration of the first

dedicated academic department at Purdue University in 1962 (Ifrah, 2001).

From this multifaceted heritage and academic interdisciplinarity, com-

puter scientists identified key areas such as data structures, algorithms

and language design as foundations of the discipline (Wirth, 1976).

Thoughout the process of institutionalization, the tracing of the ”roots”

of computation remained a constant debate as to whether computer sci-

ence exists within the realm of mathematics, of engineering or as a part of

the natural sciences. The logico-mathematical model of computer science

contends that one can do computer science without an electronic com-

puter, while the engineering approach of computer science tends to put

more practical matters, such as architecture, language design and systems

programming (implicitly assuming the use of a digital computer) at the

core of the discipline; both being a way to generate and process informa-

tion as natural phenomenon (Tedre, 2006).

The broad difference we can see between these two conceptions of

computer science is that of episteme and techne. On the theoretical and

scientific side, computer science is concerned with the primacy of ideas,

rather than of implementation. The quality of a given program is thus

deduced from its formal (mathematical) properties, rather than its formal

(aesthetic) properties. The first manifestations of such a theoretical fo-

86

cus can be found in the Information Processing Language in 1956 by Allen

Newell, Cliff Shaw and Herbert Simon, which was originally designed and

developed to prove Bertrand Russell’s Principia Mathematica (Ifrah, 2001).

While the IPL, as one of the very first programming languages, influenced

the development of multiple subsequent languages, in particular some

later languages came to be known as logic programming languages. These

are based on a formal logic syntax of facts, rules and clauses about a given

domain andwhose correctness canbe easily proven. We can see in 16 an ex-

ample of the Prolog logic programming language. Its syntax appears very

repetitive, a result of the few keywords used (induce, element and clause),

anddrawingdirectly from the lexical field of logic and framing theproblem

domain. Due to its Turing-completeness, one canwrite in Prolog programs

such as language processing, web applications, cryptography or database

programming, but its use seems to remain limited outside of theoretical

circles in 2021, according to the Stackoverflow Developer survey for popu-

lar language uses (Overflow, 2021).

Lisp—LISt Processor— is another programming language which shares

this feature of theoretical soundness faced with a limited range of actual

use in production environments. It was developed in 1958, the year of the

Dartmouth workshop on Artificial Intelligence, by its organizator, John

McCarthy, and was designed to process lists. Inheriting from IPL, it re-

tained the core idea that programs should separate the knowledge of the

problem (input data) and ways to solve it (internal rules), assuming that

the rules are independent to a specific problem.

The base structural elements of Lisp are not symbols, but lists (of sym-

bols, of lists, of nothing), and they themselves act as symbols (e.g. the

empty list). By manipulating those lists recursively—that it, processing

something in terms of itself—Lisp highlights even further this tendency

to separate computation from the problem domain, exhibiting autotelic

tendencies. This is facilitated by its atomistic and relational structure: in

order to solve what it has do, it evaluates each symbol and traverses a tree-

87

% induce(E,H) <- H is inductive explanation of E
induce(E,H):-induce(E,[],H).

induce(true,H,H):-!.
induce((A,B),H0,H):-!,
induce(A,H0,H1),
induce(B,H1,H).
induce(A,H0,H):-
/* not A=true, not A=(_,_) */
clause(A,B),
induce(B,H0,H).
induce(A,H0,H):-
element((A:-B),H0), % already assumed
induce(B,H0,H). % proceed with body of rule
induce(A,H0,[(A:-B)|H]):- % A:-B can be added to H
inducible((A:-B)),% if it's inducible, and
not element((A:-B),H0), % if it's not already there
induce(B,H0,H). % proceed with body of rule

Listing 16: ThePrologprogramming language focusesfirst and foremost on

logic predicates in order to perform computation, rather than more prac-

tical system calls.

structure in order to find a terminal symbol. Building on these features

of complex structures with simple elements, Willam Byrd, computer sci-

entst at the University of Utah, describes the Scheme interpreter written in

Scheme32 shown in (17) as ”the most beautiful program ever written” (Byrd,

2017).

The beauty of such a program, for Byrd, is the ability of these four-

teen lines of source cede to reveal powerful and complex ideas about the

nature and process of computation. As an interpreter, this program can

take any valid Scheme input and evaluate it correctly, recreating compu-

tation in terms of itself. It does so by showing and using ideas of recur-

sion (with calls to eval-expr), environment (with the evaluation of the body)

and lambda functions, as used throughout the program. Byrd equates the

feelings he experiences in witnessing and pondering the program above

to those suggested by Maxwell’s equations, which constitute the founda-

32Scheme is a Lisp dialect, designed a few years after Lisp itself, and also at MIT.

88

(define (eval-expr env)
(lambda (expr env)
pmatch expr
[,x (guard (symbol? x))
(env x)]

[(lambda (,x) ,body)
(lambda (arg)
(eval-expr body (lambda (y)

(if (eq? x y)
arg
(env y)))))]

[(,rator ,rand)
((eval-expr rator env)
(eval-expr rand env))]))

Listing 17: Scheme interpreter written in Scheme, revealing the power and

self-reference of the language.

Figure 2.4: Maxwell’s equations form a terse, unified basis for electromag-

netism, optics and electric circuitry.

tion of classical electromagnetism (see 2.4), a comparison that other com-

puter scientists have made (Kay, 2004). In both cases, the quality ascribed

to those inscriptions come from the simplicity and conciseness of their

base elements—making it easy to understand what the symbols mean and

howwe can compute relevant outputs—all the while allowing for complex

and deep consequences for, respectively, computer science and electro-

magnetism.

With this direct manipulation of symbolic units upon which logic op-

erations can be performed, Lisp became the language of AI, an intelli-

gence conceived first and foremost as abstractly logical. Lisp-based AI

was thus working on what Seymour Papert has called ”toy problems”—

self-referential theorems, children’s stories, or simple puzzles or games

(nil, 2009). In these, the problem and the hardware are reduced from

89

their complexity and multi-consequential relationships to a finite, dis-

creete set of concepts and situations. Confronted to the realworld—that is,

to commercial exploitation—Lisp’s model of symbol manipulation, which

proved somewhat successful in those early academic scenarios, started to

be applied to issues of natural language understanding and generation in

broader applications. Despite disappointing reviews from government re-

ports regarding the effectiveness of these AI techniques, commercial ap-

plications flourished, with companies such as Lisp Machines, Inc. and

Symbolics offering Lisp-based development and support. Yet, in the 1980s,

over-promising and under-delivering of Lisp-based AI applications, which

often came from the combinatorial explosion deriving from the list- and

tree-based representations, met a dead-end. In this case, a restricted prob-

lem domain can enable a particular aesthetic judgment, but also exclude

others.

”By making concrete what was formerly abstract, the code for our Lisp

interpreter gives us a new way of understanding how Lisp works”, notes

Michael Nielsen in his analysis of Lisp, pointing at how, across from the

episteme of computational truths stands the techne of implementation

(Nielsen, 2012). The alternative to such abstract, high-level language, is

then to consider computer science as an engineering discipline, a shift be-

tween theoretical programming andpractical programming is EdsgerDijk-

stra’s Notes on Structured Programming. In it, he points out the limitation

of considering programming exclusively as a concrete, bottom-up activ-

ity, and the need to formalize it in order to conform to the standards of

mathematical logical soundness. Dijkstra argues for the superiority of for-

mal methods through the need for a sound theoretical basis when writing

software, at a time when the software industry is confronted with its first

crisis.

Within the software engineering debates, the theory and practice dis-

tinction had a slightly different tone, with terms like “art” and “science”

labeling two, implicitly opposed, perspectives on programming. Program-

90

ming suffered from an earlier image of an inherently unmanageable, un-

systematic, and artistic activity, , many saw programming essentially as an

art or craft (Tedre, 2006), rather than an exact science. Beyond theoretical

soundness, computer science engineering concerns itself with quantified

efficiency and sustainability, with measurements such as the O() notation

for program execution complexity. It is not so much about whether it is

possible to express an algorithm in a programming language, but whether

it is possible to run it effectively, in the contingent environments of hard-

ware, humans and problem domains33.

This approach, halfway between science and art, is perhaps best seen

in Donald Knuth’s magnum opus, The Art of Computer Programming. In

it, Knuth summarizes the findings and achievements of the field of com-

puter science in terms of algorithm design and implementation, in or-

der to ”to organize and summarize what is known about the fast subject of

computer methods and to give it firm mathematical and historical founda-

tions.” (Knuth, 1997). The art of computer programming, according to him,

is therefore based on mathematics, but differs from it insofar as it does

have to deal with concepts of effectiveness, implementation and contin-

gency. In so doing, Knuth takes on a more empirical approach to pro-

gramming than his contemporaries, inspecting source code and running

software to assess their performance, an approach he first inaugurated for

FORTRANprogramswhen reporting on their concrete effectiveness for the

United StatesDepartment ofDefense (Defense Technical InformationCen-

ter, 1970).

Another influential textbook insisting that computation is not to be

seen as an autotelic phenomenon is Structure and Interpretation of Com-

puter Programs. In it, the authors insist that source code is ”must bewritten

for people to read, and only incidentally for machines to execute” (Abelson

et al., 1979). Readability is thus an explicit standard in the discipline of

33Notably, algorithms in textbooks tend to be erroneous when used in production; only in

five out of twenty are they correct (Pattis, 1988).

91

function bubble_sort!(X)
for i in 1:length(X), j in 1:length(X)-i

if X[j] > X[j+1]
(X[j+1], X[j]) = (X[j], X[j+1])

end
end

end

Listing 18: Bubble Sort implementation in Julia uses the language features

to use only a single iteration loop. (Moss, 2021a)

function nearest_neighbor(x', phi, D, dist)
D[argmin([dist(phi(x), phi(x')) for (x,y) in D])][end]

end

Listing 19: Nearest neighbor implementation in Julia (Moss, 2021b).

programming, along with a less visible focus on efficiency and verifiabil-

ity. Finally, the aesthetic standard in this more engineering approach to

computer science is, again, proportionality between the number of lines

of code written and the complexity of the idea explained. We can see such

a value at play in the series Beautiful Julia Algorithms (Moss, 2022). For

instance, 18 implements the classic Bubble Sort sorting algorithm in one

loop rather than the usual two loops in C, resulting in an easier grasping

of the concept at hand, rather than being distracted by the idiosyncracy of

the implementation details. The simplicity of scientific algorithms is ex-

pressed even further in 19 the one-line implementation of a procedure for

finding a given element’s nearest neighbor, a crucial component of classi-

fication systems.

According to Tedre, computer science itself was split in a struggle be-

tween correctness and productivity, between theory and implementation,

and between formal provability and intuitive art (Tedre, 2014). In the early

developments of the field, when machine time was expensive and every

instruction cycle counted, efficiency ruled over elegance, but in the end he

92

assesses elegance prevailed, a concept we will explore further in 2.2.2.

In closing, one should note that theArt in the title of Knuth’s series does

not, however, refer to art as a fine art, or a purely aesthetic object. In a 1974

talk at the ACM, Knuth goes back to its Latin roots, where we find ars, artis

meaning ”skill.”, noting that the equivalent in Greek being τεχνη, the root

of both ”technology” and ”technique.”. This semantic proximity helps him

reconcile computation as both a science and an art, the first due to its roots

in mathematics and logic, and the second

because it applies accumulated knowledge to the world, because

it requires skill and ingenuity, and especially because it produces

objects of beauty. A programmer who subconsciously views him-

self as an artist will enjoy what he does and will do it better.

Therefore we can be glad that people who lecture at computer

conferences speak about the state of the Art. (Knuth, 1974)

When written within an academic and scientific context, source code

tends to align with the aesthetic standards of software development,

valuing reliability, reabability, sustainability, for instance through Greg

Wilson’s work on the development of software development principles

through the Software Carpentry initiative. This alignment can also be seen

in a conception of computer science as a kind of engineering, as an empir-

ical practice which can and should still be formalized in order to become

more efficient. There, one can turn to Donald Knuth’s Art of Computer Pro-

gramming to see the connections between the academia’s standards and

the industry’s standards.

And yet, a conception of computation as engineering isn’t the only con-

ception of computer science. Within a consideration of computer science

as a theoretical and abstract object of study, source code becomes ameans

of providing insights intomore complex abstract concepts, seen in the Lisp

interpreter, or one-line algorithms implementing foundational algorithms

in computer science. The beauty of scientific source code is thus associ-

93

ated with the beauty of other sciences, such asmathematics and engineer-

ing. And yet, Knuth is also known as the advocate of literate programmig,

a practice which engages first source code as a textual, rather than sci-

entific, object. To address this nature, we complete our overview of code

practitioners by turning to the software artists, who engage most directly

with program texts through source code poetry.

2.1.4 Poets

Ever since Christopher Stratchey’s love letters, programmers have been cu-

rious of the intertwining of language and computation. Electronic litera-

ture is a broad field encompassing natural language texts taking full ad-

vantage of the dynamic feature of computing to redefine the concept of

text, authorship and readership. It encompasses a variety of approaches,

including generative literature, interactive fiction, visual poetry, source

code poetry and esoteric programming languages, as well as certain as-

pects of software art. Here, we focus here only on the elements of elec-

tronic literature which shift their focus from output to input, from exe-

cutable binary with transformed natural language as a result, to static, la-

tent source Particularly, we pay attention to the role of function, correct-

ness and meaning-making in these particular program texts.

Code poetry as executed literature

Electronic literature, a formbased on the playful détournement of the com-

puter’s constraints, gets closer to our topic insofar as the poems gener-

ated represent a more direct application of the rule-based paradigm to

the syntactical output of the program. Starting in 1953 with Christopher

Stratchey’s love letters, generated (and signed!) by MUC, the Manch-

esterUnivacComputer, computer poems are generated by algorithmic pro-

cesses, and as such rely essentially on this particular feature of program-

ming: laying out rules in order to synthesize syntactically and semanti-

94

cally sound natural language poems. Here, the rules themselves matter

only in relation to the output, as seen by their ratio: a single rule for a

seemingly-infinite amount of outputs, with these outputs very often being

the only aspect of the piece shown to the public.

These works and their authors build on a longer tradition of rule-based

composition, from Hebrew to the Oulipo and John Cage’s indeterminis-

tic composition, amongst others (Cramer, 2003), a tradition in which cre-

ativity and beauty can emerge from within a strict framework of formal

rules. Nonetheless, the source code to these works is rarely released in

conjunction with their output, hinting again at their lesser importance in

terms of their overall artistic values. If electronic literature is composed

of two texts, a natural-language output and a computer-language source,

only the former is actually considered to be poetry, often leaving the latter

in its shadow (as well as, sometimes, its programmer, an individual some-

times different from the poet). The poem exists through the code, but isn’t

exclusively limited to the human-readable version of the code, as it only

comes to life and can be fully appreciated, under the poet’s terms, once

interpreted or compiled. While much has been written on electronic liter-

ature, few of those commentaries focus on the soundness and the beauty

of the source code as an essential component of the work, and only in re-

cent times have we seen the emergence of close-readings of the source

of some of these works for their own sake (Montfort et al., 2014; Marino,

2020; Brock, 2019). These constitute a body of work centered around the

concept of generative aesthetics (Goriunova & Shulgin, 2005), in which

beauty comes from the unpredictable and somewhat complex interplay of

rule-based systems, and whose manifestations encompass not only writ-

ten works, but games, visual and musical works as well.

Source code poetry is thus a form of electronic literature, but also a

form of software art. Software art is an umbrella term regrouping artistic

practices which engage with the computer on a somewhat direct, material

95

level, whether through hardware34 or software35. This space for artistic ex-

perimentation flourished at the dawn of the 20th century, with initiatives

such as theTransmediale festival’s’ introduction of a software art award be-

tween 2001 and 2004, or the Run_me festival, from 2002 to 2004. In both of

these, the focus is on projects which incorporate standalone programmes

or script-based applications which aren not merely functional tools, but

also act as an effective artistic proposition, as decided by the artist, jury

and public. These works often bring the normally hidden, basic materials

from which digital works are made (e.g. code, circuits and data structures)

into the foreground (Yuill, 2004). From this perspective, code poetry is a

form a software art where execution is required, but not sufficient to con-

stitute a meaningful work.

The approach of code poets is therefore more specific than broad gen-

erative aesthetics: it is a matter of exploring the expressive affordances of

source code, and the overlap of machine-meaning and human-meaning,

acting as a vector for artistic communication. Such an overlap of meaning

is indeed the specific feature of source code poetry. In a broad sense, code

poetry conflates classical poetry (as strict syntactical and phonetical form,

combined with poetic expressivity) with computer code, but it is primarily

defined by its inversion of the reading and executing processes. Usually, a

program text is loosely assumed to be somewhat pleasurable to read, but

is expected to be executable. Code poems rather assume that the program

text is somewhat executable, but demand that it is pleasurable to read. Fol-

lowing the threads laid out by electronic literature, code poetry starts from

this essential feature of computers of working with strictly defined formal

rules, but departs from it in terms of utility. Code poems are only func-

tional insofar as they are accepted by the intepreter or compiler of the lan-

guage in which they are written, but they are functional nonetheless. The

are functional to the computer, in that they are composed in a legal syn-

34See Alexei Shuglin’s 386 DX (1998-2013)
35See Netochka Nezanova’s Nebula.M81 (1999)

96

tax and can be successfully parsed; but they do not need their output to

do anything of immediate andmeasurable use. Such formal compliance is

only a pre-requisite, a creative constraint, for their human writers.

Within this reliance on creative constraints provided by a computing

environment, the emphasis here is on the act of reading, rather than on

the act of deciphering, as we have seen with obfuscated code (and in func-

tional code in general). Source code poems are often easy to read, and have

an expressive power which operates beyond the common use of program-

ming. They also make the reader reconsider the relationship to the ma-

chine, and the relationship to function. By using a machine language in

the way the machine expects to receive it, it is no longer software refer-

ring to itself, exploring its own poetics and its specific meaning-making

abilities. By forcing itself to be functional—that is, to produce meaningful

output as the result of execution, it becomes software investigating itself,

and through that, investigating the systemwithin which it exists and acts,

and the assumptionswe ascribe to it. Code poems thus shed a new light on

how and why source code is written, not as a functional artefact, but as a

poetic one, focusing on fabrication rather than production, and expressing

a subject rather than an intent (Paloque-Bergès, 2009).

In their different manifestations, code poems make the boundary be-

tween computer meaning and humanmeaning thinner and thinner, a fea-

ture often afforded by the existence and use of higher-level programming

languages. Startingwith the development of FLOWMATIC in 1955 byGrace

Hopper, it was shown that an English-like syntactical system could be used

to communicate concepts for the computer to process. From there, pro-

gramming languages could be described along a gradient, with binary at

the lowest end, and natural language (in an overwhelingmajority, English)

at the highest end. This implies that they could be written and read sim-

ilarly to English, including word order, pronouncation and interpretation,

similar to the error-tolerance of human laguages, which doesn’t cause the

whole communication process to fail whenever a specific word, or a word

97

663 STODL CG
664 TTF/8
665 DMP* VXSC
666 GAINBRAK,1 # NUMERO MYSTERIOSO
667 ANGTERM
668 VAD
669 LAND
670 VSU RTB

Listing 20: AGC source code for the Lunar Landing Guidance Equation,

1969

order isn’t understood.

Layeredmachine texts

Yet, code poems from the 20th century aren’t the first time where a part of

the source code is written exclusively to elicit a human reaction, without

anymachinic side-effects. One of the earliest of those instances is perhaps

the Apollo 11 Guidance Computer (AGC) code, written in 1969 in Assem-

bly (Garry & Hamilton, 1969). Cultural references and jokes are peppered

throughout the text as comments, asserting computer code as a means of

expression beyond exclusively technical tasks36, and independent from a

single writer’s preferences, since they passed multiple checks and review

processes to end up in the final, submitted and executed document, such

as reproduced in 20.

Code comments allow a programmer to write in their mother tongue,

rather than in the computer’s, enabling more syntactic and semantic flex-

ibility, and thus reveal a burgeoning desire for programmers to express

themselves within their medium of choice, in the midst of an impersonal

interaction with the machine system.

Rather than limiting their lexical field to comments, some writers de-

cided to engage directly with machine keywords in order to compose po-

36Other files include comments such as ”Crank that wheel” or ”Burn Baby Burn” when trig-

gering the ignition subroutine.

98

ems. One of the first instances of this human poetry composed with ma-

chine syntax are the Poèmes Algol by Noël Arnaud (Arnaud, 1968). As a

member of the Oulipo movement, he sets himself the constraints of only

using those reserved keywords of the ALGOL 68 programming language

to extract meaning beyond their original purpose. Reading those, one is

first struck by their playfulness in pronounciation, and subsequently by

the unexpected linguistic associations that they suggest.

More recently, this has been illustrated in the work of MOONBIT

(Mosteirin & Dobson, 2019), a series of code poems computationally ex-

tracted from the AGC’s source code, with those two program texts stand-

ing almost 50 years apart. In their work, the authors want to highlight that

software is not only functional, but also social, political and aesthetic; im-

portantly, the relation between aesthetics and function is not seen as mu-

tually exclusive, but rather as supplementary37. As programmers could al-

ready express themselves in a language as rigid as Assembly, subsequent

programming languages would further expand poetic possibilities.

Code poetry benefited greatly from the advent of scripting languages,

such as Python, Ruby or Perl (see 2.1.3 above). As we’ve seen, scripting

languages are readable and versatile; readable because their syntax tends

to borrow from natural languages rather than invented idioms, at the ex-

pense of functionality38, and versatile because they often handle some of

37”The aesthetic features of computer code—often characterized by a rigidly formal, re-

stricted syntax, and numerous paralinguistic dimensions—sometimes have a supplemental

character; they appear, at times, almost ornamental in their sheer excess beyond the functional

elements and programmed goals. At other times, these features are an intrinsic and necessary

part of the code. We believe that these special properties of computer codemake possible imagi-

native uses ormisuses by its human programmers and that these properties and features justify

our exuberant readings, misreadings, translations, and appropriations.” (Mosteirin & Dobson,

2019)
38For instance, C’s strtok() separates a string of text in a list of strings along several

particular delimiters, while Python’s str.split() does the same thingwith amore readable

name, but with only one delimiter.

99

print STDOUT q
Just another Perl hacker,
unless $spring

Listing 21: Just Another Perl Hacker, japh.pl

the more complex and subtle data and platform idiosyncracies39.

The community of programmers writing in Perl, perlmonks40 has been

one of the most vibrant and productive communities when it comes to

code poetry. This particular use of Perl started in 1990, when the language

creator Larry Wall shared some of the poems written in the language, and

it gained further exposition through the work of Shannon Hopkins (Hop-

kins, 1992). The first Perl poem is considered to have been written by Wall

in 1990, reproduced in 21.

Hopkins analyzes the ability of the poem to enable dual understand-

ings of the source—human andmachine. Yet, departing from the previous

conceptions of source that we have looked at, code poetry does not aim at

expressing the same thing to the machine and to the human. The value of

a good poem comes from its ability to evoke different concepts for both

readers of the source code. As Hopkins puts it:

In this poem, the q operator causes the next character (in this

case a newline) to be taken as a single quote, with the next oc-

currence of that delimiter taken as the closing quote. Thus, the

single-quoted line ’Just another Perl hacker’ is printed to STDOUT.

In Perl, the ”unless $spring” line is mostly filler, since $spring is

undefined. In poetical terms, however, ”$spring” is very impor-

39Python and Perl are both dynamically typed languages, meaning that thewriter does not

need to bother with additional syntax and possible verbosity, but rather focus only on the

most expressive tokens, all while letting the interpreter deal with the kinds of errors which

would undermine the functionality requirement of code poetry in other languages.
40See their website: https://perlmonks.org/, with the spiritual, devoted and commu-

nal undertones that such a name implies.

100

https://perlmonks.org/

tant: haiku poetry is supposed to specify (directly or indirectly)

the season of the year. As for the q operator, that reads in English

as the word ”queue”, which makes perfect sense in the context of

the poem. (Hopkins, 1992)

The poem Black Perl, submitted anonymously in 1990, is another exam-

ple of the richness of the productions of this community. It is presented in

22 in its updated formbykck,making it compatible for perl 5.20 in 2017. The

effort of Perl community members of updating Black Perl to more recent

versions of the language is a testament to the fact that one of the intrinsic

qualities of the poem is its ability to be correctly processed by the language

interpreter.

Themost obvious feature of this code poem is that it can be read by any-

one, including by readers with no previous programming experience: each

word is valid both as English and as Perl. A second feature is the abundant

use of verbs. Perl belongs to a family of programming languages grouped

under the imperative paradigm, which matches a grammatical mood of

natural languages, the imperative mood. Such mood emphasizes actions

to be take rather than, for instance, descriptions of situations, and thus

sets a clear tone for the poem. The fact that Perl is based on stating pro-

cedures to be executed and states to be changed creates this feeling of re-

lentless urgency when reading through the poem, a constant need to be

taking actions, for things to be changed. Here, the native constraints of

the programming language interacts directly with the poetic suggestion

of the work in a first way: the nature of Perl is that of giving orders, result-

ing in a poem which addresses someone to execute something. Still, Perl’s

flexibility leaves us wondering as to who and what are concerned by these

orders. Is the poem directing its words to itself? To the reader? Is Perl just

ever talking exclusively to the computer? This ambiguity of the adressee

adds to the ominousness of each verse.

The object of each of these predicates presents a different kind of am-

101

#!/usr/bin perl
no warnings;

BEFOREHAND: close door, each window & exit; wait until time.
open spellbook, study, read (scan, $elect, tell us);

write it, print the hex while each watches,
reverse its, length, write, again;

kill spiders, pop them, chop, split, kill them.
unlink arms, shift, wait & listen (listening, wait),
sort the flock (then, warn ”the goats” & kill ”the sheep”);

kill them, dump qualms, shift moralities,
values aside, each one;

die sheep? die to : reverse { the => system
(you accept (reject, respect)) };

next step,
kill `the next sacrifice`, each sacrifice,
wait, redo ritual until ”all the spirits are pleased”;

do { it => ”as they say” }.
do { it =>

(*everyone***must***participate***in***forbidden**s*e*x*)↪→

+ }.
return last victim; package body;

exit crypt (time, times & ”half a time”) & close it,
select (quickly) & warn your (next victim);

AFTERWARDS: tell nobody.
wait, wait until time;

wait until next year, next decade;
sleep, sleep, die yourself,
die @last

Listing 22: Black Perl is one of the first Perl poems, shared anonymously

online. It makes creative use of Perl’s flexible and high-level syntax.

102

biguity: earlier versions of Perl function in such a way that they ignore

unknown tokens4142. Each of the non-reserved keywords in the poem are

therefore, to the Perl interpreter, potentially inexistant, allowing for a large

latitude of creative freedom from the writer’s part. Such a feature allows

for a tension between the strict, untoucheable meaning of Perl’s reserved

keywords, and the almost infinite combination of variable and procedure

names and regular expressions. This tension nonetheless happens within

a certain rhythm, resulting from the programming syntax: kill them, dump

qualms, shift moralities, here alternating the computer’s lexicon and the

poet’s, both distinct and nonetheless intertwined to create a Gestalt, a

whole which is more than the sum of its parts.

A clever use of Perl’s handling of undefined variables and execution or-

der allows the writer to use keywords for their human semantics, while

subverting their actual computer function. For instance, the die function

should raise an exception, but wrapped within the exit () and close key-

words, the command is not interpred and therefore never reaches the exe-

cution point, bypassing the abrupt interruption. The subversion here isn’t

purely semiotic, in the sense of what each individual word means, but

rather in how the control flow of the program operates—technical skill is

in this case required for artistic skill to be displayed.

Finally, the use of the BEFOREHAND: and AFTERWARDS: words mimick com-

puting concepts which do not actually exist in Perl’s implementation: the

pre-processor and post-processor directives. Present in languages such a

C, these specify code which is to be executed respectively before and af-

ter the main routine. In this poem, though, these patterns are co-opted to

reminisce the reader of the prologue and epilogue sometimes present in

literary texts. Again, these seem to be both valid in computer and human

terms, and yet seem to come from different realms.

41e.g. undefined variables do not cause a core dump.
42Which results in the poem having to be updated/ported, in this case by someone else

than the original writer

103

This instance of Perl poetry highlights a couple of concepts that are par-

ticularly present in code poetry. While it has technical knowledge of the

language in common with obfuscation, it departs from obfuscated works,

which operate through syntax compression, by harnessing the expressive

power of semiotic ambiguity, giving new meaning to reserved keywords.

Such an ambiguity is furthermore bi-directional: the computing keywords

become imbued with natural language significance, bringing the lexicon

of themachine into the realm of the poetic, while the human-defined vari-

able and procedure names, and of the regular expressions, are chosen as to

appear in line with the rhythm and structure of the language. Such a work

highlights the co-existence of human and machine meaning inherent to

any program text43.

Following in the footsteps of the perlmonks, additional communities

around code poetry have formed, whether in university settings, such as

Stanford’s Code Poetry Slam, which ran between 2014 and 2016 (Kagen &

Werner, 2016), or as independent intiatives, like the Source Code Poetry

event, which runs annual contests (Unknown, 2017). The simple constraint

and low barrier to entry also results in collective writings where program-

mers engage in playful writing, such as in the #SongsOfCode trend on a

micro-blogging website where the challenge. In 23, we can see a simple

example of translation from the problem of popular pop songs into ma-

chine language. The tension between the familiarity of the song and the

estrangeness of the Java syntax is a kind of puzzle that is also reminiscent

of hackers, further establishing cognitive complexity as a factor in the aes-

thetic judgment of source code poetry.

We saw in 2.1.1 that the transition of programming from an annex prac-

tice to a full-fledgeddiscipline andprofession resulted in source codebeing

recognized as a text in its own, to which engineering and artistic attention

should be paid. No longer a transitional state from formula to binary, it

becomes a semantic material, whose layout, organization and syntax are
43Except perhaps those which deal exclusively with scientific and mathematical concepts

104

/** Nothing compares 2 U */

public class U{
public bool Equals(object obj){

return false;
}

}

Listing 23: #SongsInCode is an example of functional source code poetry

written to represent the tradionally non-functional domain of pop songs.

important to the eyes of its writers and readers. Pushing further into the

direction of the visual layout of the code, such an endeavour becomes pur-

sued for its own sake, existing parallel to the need for a program to be func-

tional, and echoing the practice of Guillaume Apollinaire’s calligrammes.

There, the physical layout of the program text comes to the forefront,

alongwith its executed representation. Written byKerr andHolden in 2014,

water.c is a poem written in C which illustrate both of these components.

In 24, we can see that the way the whitespace is controlled in the source

code evokes a visual representationofwater as three columns composedof

;, { and { characters, computer-understood punctuation which nonetheless

holds only a tiny semantic load as block and statement delimiters.

Once compiled and executed, water.c gains an additional quality: its

output represents moving droplets running across the screen, with a par-

ticular frame shown in 25. We see that code poetry, like other forms of

writing program texts, differ from other means of expression in their dual

representatiom, as source and software, static and dynamic.

Code poetry values codewhich, while being functional, expressesmore

than what it does, by allowing for Sprachspiele, languages games where

pronounciation, syntax and semantics are playfully composed into a fluid

linguistic construct in order to match a human poetic form, such as the

haiku, or to constitute a specific puzzle. A subtle interplay of humanmean-

ing and machine meaning, layout and execution allows for a complex po-

105

#define submerge const char*_=O%239?” ”:”\t;\t”;O*=2654435761;int
#define _cOb8(...) int s,on,__VA_ARGS__;int main(int O, char**Q)

cOb8(o, _oO8ocQOcOb, _ocQbo8oo, _oO8ocOb_
){ ; { ;;; ;;} ;{
;; ;{ ; } {;;}
} float the;; static things ;; for (;;){ us :;;

; ; break; the; ;; long grass ;unsigned squall ; }
{ } ; while (1){soft:; submerge us;; in: sleep (0) ;
; ; printf (_); quietly :on ;; the; soil:; };
{{ }; ; ; ;; ;{ ; }; {

{ ; shake: time (1) ;register *_, the =clock(s);
;} ; volatile *_, winds ; ; double wills ;{
; char the ,* fire ;; short companion,*_;}

; { union {}*_, together ;; ; void *warms ;}
} ;; ;{; ;} ; ;;
; ; if (1) wet :; raise (1); struct{}ure ;; ;
; ; free (0);for(;;){ newborn :; ; daughter :; ;
;{ ; extern al, ** world ,*re;const ructed ;};

; ; ; continue;on:;; floods :; ; of: water :;};}
; ;{ ; ; ;; { ; ; } ; } ; ; }

Listing 24: water.c has a very deliberate layout and syntax, reminiscing of

calligrames (Holden & Kerr, 2016).

; ;
; ;

;
↪→

;
;

;

Listing 25: The output of 24 consists in ASCII representation of water

droplets, bearing a family resemblance to BASIC one liners, and suggesting

a complementary representation of water.

106

etic emergence.

From engineers to poets, this section has shown how the set of individ-

uals who write and read code is heterogeneous, varying in practices, prob-

lems and approaches. While none of these communities of practice are

mutually exclusive—a software developer by day can hack on theweekend

and participate in code poetry events—, they do help us grasp how source

code’smanifestations in program texts and its evaluation by programmers

can bemultifaceted. For instance, software engineers prefer code which is

modular, modifiable, sustainable and understandable by the largest audi-

ence of possible contributors, while hackers would favor conciseness over

expressivity, and tolerate playful idiosyncracy for the purpose of imme-

diate, functional efficiency, with a practical engagement with the tools

of their trade. On the other hand, scientific programming favors ease of

use and reproducibility, along with a certain quest to represent the elegant

concepts of computer science, while code poets explore the semantic ten-

sion between a human interpretation and the machine interpretation of

a given source code, via syntactic games, graphical layouts and interplay

between the static and executed versions of software.

Still, there are strands of similarity within this apparent diversity. The

code snippets in this section show that there is a tendency to prefer a spe-

cific group of qualities—readability, conciseness, clarity, expressivity and

functionality—even though different types of practices would put a dif-

ferent emphasis on each of those aspects. The question we turn to next,

then, is to what extent do these different practices of code writing and

reading share common judgments regarding their formal properties? To

start this investigation, we first analyze programmers’ discourses in 2.2 in

order to identify concrete categories of formal properties which might en-

able a source code to be positively valued for its appearance, before we ex-

107

amine the aesthetic domains code practitioners refer to when discussing

beautiful code in 2.3 to further qualifies these properties.

2.2 Ideals of beauty

Following our overview of the varieties of practices and program texts

amongst those who read and write source code, we now analyze more

thoroughly what are the aesthetic standards most value by those different

groups. The aim here is to formalize our understanding of which source

code is considered beautiful, and to do so in a dual approach. The goal here

is to capture both the specificmanifestations of beautiful code as specified

and enunciated by programmers, as well as the semantic contexts from

which these enunciations originate. To do so, wewill introduce a discourse

analysis framework for the empirical study of the corpus, followed by an

examination of the discourses that programmers deploy when it comes to

explicit their aesthetic preferences of source code. What we will see is that

a set of aesthetic values and a set of aesthetic manifestations prove to be

recurringly consistent; conversely, the aesthetic domains that are mobi-

lized to justify these values are clearly distinct.

2.2.1 Introduction to theMethodology

Discourse consists of text, talk and media, which express ways of know-

ing the world, of experiencing and valuing the world. This study builds on

Kintsch and Van Dijk’s work on providing tools to analyze an instance of

discourse, and is centered around what is said to constitute good source

code. While discourse analysis can also be used critically by unearthing

which value judgments that occur in power relationships (Mullet, 2018),

we focus here on aesthetic value judgments, as their are first expressed

through language. Of all the different approaches to discourse, the one

we focus on here is that of pragmatics, involving the spatio-temporal and

108

intentional context in which the discourse is uttered. We find this ap-

proach particularly fitting through its implication of the cooperative prin-

ciple, in which utterances are ultimately related to one another through

communicative cooperation to reveal the intent of the speaker (Schiffrin,

1994). Practically, this means that we assume the position of program-

mers talking to programmers is cooperative insofar as both speaker and

listener want to achieve a similar goal: expliciting what writing good code

entails. This double understanding—focusing first and foremost on utter-

ances, and then re-examining themwithin abroader cooperative context—

will lead us to encompass a variety of productionmedia (blog post, forums,

conferences, text books), in order to depict the cultural background (soft-

ware practices as outlined above as well as additional factors such as skill

levels). Our comprehension of those texts, then, will be set in motion by

a a dual movement between local, micro-units of meaning and broader,

theoretical macro-structure of the text, and linked by acts of co-reference

(Kintsch& vanDijk, 1978). As themacro structure represents a certain kind

of world situation, we will connect these to specific aesthetic fields, con-

sidering that the world of the aesthetics of source code is pragmatically

connected, by the programmers and via their discourses, to adjacent world

of the aesthetics of architecture, literature and mathematics.

Particular attention will be paid to the difference between intentional

and extensional meaning (Dijk & Kintsch, 1983). As we will see, some of

the texts in our corpus tend to address a particular problem (e.g. on fo-

rums, social media or question & answer platforms), or to discuss broader

concepts around well-written code. Particularly, figures of speech such as

metaphorical devicesmay attract attention to important concepts, provide

more cues for local and global coherence, suggest plausible interpretations

(e.g., a praise versus a critique), andwill in general assignmore structure to

elements of the semantic representation, so that [meaning] retrieval is eas-

ier (Dijk & Kintsch, 1983). As we will see, a reference to code as a spaghetti

is not made as connote a nutritional value, but rather convoluted spatial

109

properties.

Following this idea, we will proceed by examining discursive markers

to deduce overarching concepts at the semantic level. Among those discur-

sive markers, we include single propositions as explicit predicates regard-

ing source code, lexical fields used in those predicates in order to identify

their connotations and denotations, as well as for the tone of the enunci-

ations to identify value judgments. At the semantic level, we will exam-

ine the socio-cultural references, the a priori knowledge assumed from the

audience, as well as the thematic entities which underline the discourse

at hand. We will also not be limited to discourses in natural language, but

also include source code examples presented by programmers as compo-

nents of their argumentation.

Finally, our intepretation of the macrostructures described by Kintsch

and Van Dijk will be complemented by the work done by Lakoff and John-

son on a theory of conceptual metaphors. They argue that the metaphor

maps a source domain, made up of cognitive structures, to a target domain

and, in the process, they extend thefield of applicability ofmetaphors from

the strictly literary to the broadly cultural; metaphors work because each

of us has some conception of those domains involved in the metaphorical

process (Lakoff & Johnson, 1980; Lakoff, 1980). Metaphors’ essential depen-

dence on these pre-existing cognitive structures, which we associate with

familiar concepts and properties, give them an explanatory quality when

it comes to qualify foreign domains.

In particular, these sources are defined enough to not be mistaken for

something else, but broad enough to allow for multiple variants of itself

to be applied to various targets, providing both diversity and reliability in

our inquiry.

As we will see below, their approach allows us to focus not just on

textual objects, but on the vast range of linguistic deveices used to make

sense in computing-related environments. Given that the source of the

metaphor should be grounded, with as little invariablity as possible, in

110

order to qualify a potentially ill-defined target domain, this provides us

with a first foray into the inherent elusiveness and instability of comput-

ing when presented to a broader audience.

Going beyond the role of metaphors manifested in expressions such

as the desktop, the mouse, or the cloud mentioned in 3.3.1, we will explore

Lakoff’s understanding of the specifically poetic metaphor in 4.2.1 when it

comes to qualifying the aesthetics of source code. We will pay particular

attention to what programmers are saying about beautiful (or ugly) source

code, whichmetaphors they employ to support these value judgments, and

why—focusingfirst on themetaphorsof source code, beforemoving, in the

next chapter, to the metaphors in source code.

The corpus studied here consists of texts ranging from textbooks and

trade manuals to blog posts and online forum discussions44. These con-

stitute our primary sources insofar as they are written by practitioners on

the topic of good and beautiful code. The rationale behind such a broad

approach is to constitute a lexical basis for what practicing programmers

consider when assessing good code, as expressed in the everyday interac-

tions of online forums and blog posts, but also inclusive of diverse sources

of communication, beyond edited volumes. We consider that authoritative

sources can be both canonical textbooks or widely-read blog posts from

well-known skilled practitioners, but also include more casual forum ex-

changes in order to support the empirical dimension of our research. This

methodology will allow us to show that there are specific ways in which

programmers qualify well-written code, and employing recurring refer-

ences.

44Specifically, wehave gathered 47 different online sources, from forumdiscussions to blog

posts, 26 journal articles from the Association for ComputingMachinery, 20monographs and

1 edited volume, listed in Appendix I.

111

2.2.2 Lexical Field in Programmer Discourse

There is onemajor study of the lexical field programmers use, done by Erik

Piñeiro in his doctoral thesis. In it, he argues that aesthetics exist from

a programmers perspective, decoupled from the final, executable form of

the software. While this current study draws on his work, and confirms

his findings, we also build upon it in several ways. First, Piñeiro focuses

on a narrower corpus, that of the Slashdot.org forums (Pineiro, 2003). Sec-

ond, he examines aesthetic judgment from a private perspective of soft-

ware engineers, separate from other possible aesthetic fields which might

enter indialoguewithbeautiful code (Pineiro, 2003), suchas artists or hack-

ers. Finally, his discussion of aesthetics takes place in a broader context of

business management and productivity, while this current study situates

itself within a broader interdisciplinary field including comparativemedia

studies and aesthetic philosophy and science and technology studies. Still,

Piñeiro’s work provides valuable insights in terms of identifying themani-

festations and rationales for an aesthetic experience of source code. Here,

we build on his works by highlighting the main adjectives in the lexical

field of programmers’ discourse, in and beyond software developers.

Clean

Already mentioned in Peter Naur’s analysis of the practice of program-

ming, clean is the first adjective which stands out as a requirement when

assessing the form taken by source code. Clean code, he says, is a reference

to howeasy it is for readers of code to build a coherent theory of the system

both described and prescribed by this source code (Naur, 1985). This pur-

pose of cleanliness is developed at great lengths a couple of decades later

in a series of best-selling trade manuals written by Robert C. Martin and

published by Prentice Hall from 2009 to 2021, the full titles of which clearly

112

enunciate their normative aim45. What exactly is cleanliness, in Martin’s

terms, is nonetheless defined by circumlocutions; he relies on contribu-

tions from experts, again showing the relation ship between expertise and

aesthetic judgment. After asking leading programmers what clean code

means to them, he carries on in the volume by providing examples of how

to achieve clean code, while only loosely defining what it is. In general,

cleanliness is mostly a definition by negation: it states that something

is clean if it is free from impurities, blemish, error, etc. An alternative to

this definition which trade manuals such as Clean Code use consists in

providing examples on how to move from bad, ”dirty” code, to clean code

through specific, practical guidelines regarding naming, spacing, class de-

limitation, etc.. Starting at a high-level, some hints can be glimpsed from

Ward Cunningham’s answer:

You know you are working on clean code when each routine you

read turnsout tobeprettymuchwhat youexpected. You cancall it

beautiful code when the code alsomakes it look like the language

was made for the problem. (Martin, 2008) (p.10)

along with Grady Brooch’s:

Cleancode is simpleanddirect. Clean code reads likewell-written

prose. Clean code never obscures the designer’s intent but rather

is full of crisp abstractions and straightforward lines of control.

(Martin, 2008) (p.11)

Cleanliness is tied to expressiveness: by being devoid of any extrane-

ous syntactic and semantic symbols, it facilitates the identification of the

core of the problem at hand. Cleanliness thus works as a pre-requisite for

45Clean Code: A Handbook of Agile Software Craftsmanship, The Clean Coder: A Code Of

Conduct For Professional Programmers, Clean Architecture: A Craftsman’s Guide to Software

Structure andDesign,CleanAgile: Back to Basics,CleanCraftsmanship: Disciplines, Standards,

and Ethics.

113

expressivity. In a clean-looking program text, the extraneous details dis-

appear at the syntactic level, in order to enable expressiveness at the se-

mantic level.

Martin echoes Hunt when he advocates for such a definition of clean as

lack of additional syntactic information:

Don’t spoil a perfectly good program by over-embellishment and

over-refinement. (Hunt & Thomas, 1999)

Here, it is about quantity rather than quality: ornaments that are posi-

tively valued in parsimony (such as comments) can prove to be detrimental

when there are too many of them. This advice to programmers denotes a

conception of clean that is not just about removing asmuch syntactic form

as possible, but which also implies a balance. Overembellishment implies

excess addition, while over-refinement implies, on the contrary, excess re-

moval. This normative approach finds its echo in the numerous quota-

tions ofAntoinedeSaint-Exupéry’s commentonaircraft design across pro-

grammer discourses (Programming Wisdom [@codewisdom], 2021; Jack-

son, 2010; 4.4.7, 2003):

Il semble que la perfection soit atteinte non quand il n’y a plus

rien à ajouter, mais quand il n’y a plus rien à retrancher. (de Saint-

Exupéry, 1972)46

Obfuscation

As a corollary to clarity stands obfuscation. It is the act, either inten-

tional or un-intentional, to complicate the understanding of what a pro-

gram does by leading the reader astray through a combination of syntac-

tic techniques, a process we have already seen in the works of the IOCCC

46 In anything at all, perfection is finally attained not when there is no longer anything to

add, but when there is no longer anything to take away, when a body has been stripped down to

its nakedness., translated by Lewis Galantière (Saint-Exupery, 1990)

114

import { ref, onMounted, reactive } from 'vue';

const msg = ref(””)
const HOST = import.meta.env.DEV ? ”http://localhost:3046” : ””
const syllabi = new Array<SyllabusType>()

let start = () => {
window.location.href = '/cartridge.html'

}

onMounted(() => {
fetch(`${HOST}/syllabi/`,

{
method: 'GET'

})
.then(res => {

return res.json()
})
.then(data => {

Object.assign(syllabi, JSON.parse(data))
console.log(syllabi);
if (syllabi.length == 0)

msg.value = ”No syllabi :(”
else

msg.value = `There are ${syllabi.length} syllabi.`

})
.catch(err => {

console.error(err)
msg.value = ”Network error :|”

})
})

Listing 26: home.js is an excerpt of a JavaScript program text as it is written

by a human programmer, before minification.

above (see the discussion around 14). In its most widely applied sense, ob-

fuscation is used for practical production purposes: reducing the size of

code, and preventing the leak of proprietary information regarding how a

system behaves. For instance, the JavaScript source code in 26 is obfus-

cated through a process calledminification into the source code in 27. The

result is a shorter and lighter program text when it comes to its circulation

over a network, at the expense of readability.

Inmost cases, this process of obfuscation has very defined, quantitative

assessment criterias, such as the size of the source code file and crypto-

115

import{_ as p,g as f,o as l,c as n,a as c,h as e,t as r,b as u,i as
b,u as _,F as y,H as g,e as w}from”./Header.js”;const
H={class:”container p-3”},N=e(”h1”,null,”Home”,-1),k={class:”syll ⌋
abi”},x=[”href”],B={class:”cta”},F=m({setup(S){const
s=v(””),d=”http://localhost:3046”,o=new Array;let
h=()=>{window.location.href=”/cartridge.html”};return f(()=>{fetc ⌋
h(`${d}/syllabi/`,{method:”GET”}).then(t=>t.json()).then(t=>{Obje ⌋
ct.assign(o,JSON.parse(t)),console.log(o),o.length==0?s.value=”No
syllabi :(”:s.value=`There are ${o.length}
syllabi.`}).catch(t=>{console.error(t),s.value=”Network error
:|”})}),(t,i)=>(l(),n(u,null,[c(g),e(”main”,H,[N,e(”div”,k,[e(”di ⌋
v”,null,r(s.value),1),e(”ul”,null,[(l(!0),n(u,null,b(_(o),a=>(l() ⌋
,n(”li”,null,[e(”div”,null,[e(”a”,{href:”/syllabi/”+a.ID},r(a.tit ⌋
le),9,x)]),e(”div”,null,r(a.description),1)]))),256))])]),e(”div” ⌋
,B,[e(”button”,{id:”cta-upload”,class:”btn btn-primary mb-4
cc-btn”,onClick:i[0]||(i[0]=a=>_(h)())},”Upload
yours!”)])]),c(y)],64))}});var O=p(F,[[”__file”,”/home/pierre/cod ⌋
e/commonsyllabi/viewer/www/src/Home.vue”]]);w(O).mount(”#app”);

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Listing 27: home.js is the same program as in 26, after minification. Syn-

tactical density is gained at the expense of clarity.

graphic complexity (Pellet-Mary, 2020). Nonetheless. obfuscation can also

be valued as a positive aesthetic standard, of which the IOCCC is the best

example and the most institutionalized guarantor. These kinds of obfus-

cations, as Mateas and Montfort analyze, involve the playful exploration

of the intertwinings of syntax and semantics, seeing how much one can

bend the former without affecting the latter. These textual manipulations,

they argue, possess an inherently literary quality:

Obfuscation and weird languages invite us to join programming

contexts to the literary contexts that must obviously be consid-

ered when evaluating literary code. They also suggest that cod-

ing can resist clarity and elegance to strive instead for complexity,

can make the familiar unfamiliar, and can wrestle with the lan-

guage in which it is written, just asmuch contemporary literature

does. (Mateas &Montfort, 2005)

Such literary connection can also be seen inNoëlArnaud’sworkPoèmes

116

Algol (Arnaud, 1968), in which he uses the constructs of the language Al-

gol 68 in order to evoke in the reader something different than what the

program actually does (i.e. fail to execute anything meaningful). Here,

obfuscation is can be considered a literary value, as opposed to other do-

mains, such as the scientific or the architectural, where it is both consid-

ered exclusively negatively. Through its negative connotations, obfusca-

tion nonetheless points at the recurring theme of ease (or difficulty) of un-

derstanding.

Simple

This balance between too much and too little is found in another di-

chotomy stated by programmers: between the simple and clever. Sim-

plicity, argues Jeremy Gibbons, is not only a restraint on the quantity of

syntactic tokens (as one could achieve by keeping names short, or align-

ing indentations), but also a semantic equilibriumat the level of abstracted

ideas (Gibbons, 2012).

Simplicity in source code is therefore a form of parsimony and bal-

ance47.

This requirement of exerting balance leads us to make a difference be-

tween two kinds of simplicity: syntactical simplicity, and ontological sim-

plicity. Syntactic simplicity measures the number and conciseness visible

lexical tokens and keywords. Ontological simplicity, in turn, measures the

number of kinds of entities involved in the semantics of the program text.

Source code can have syntactic simplicity because it wrangles together

complex concepts in limited amount of characters (see our discussion on

one-liners in 2.1.2), or code is ontological simplicity, because of the min-

imal amount of computational concepts involved (as explained in 2.1.3).

Syntactical simplicity also has a more immediate consequence on one’s

47Gibbons quotes Ralph Waldo Emerson to qualify his point: ”We ascribe beauty to that

which is simple; which has no superfluous parts; which exactly answers its end; which stands

related to all things; which is the mean of many extremes.” (Gibbons, 2012)

117

experience when reading a program text: one of the issues that program-

mers face is that there are just too many lines of code that one can wrap

its head around, thus requiring that the content be pared down to its func-

tional minimum (Butler, 2012).

This distinction between syntactical and ontological simplicity high-

lights this need for balance, alongwith the concrete tradeoffs between syn-

tax and semantics that might need to be done when writing code. Source

code aesthetics thus have to balance between simplicity in breadth and

simplicity in depth regarding the composition of the program text, be-

tween the precision of a use-case in a problem domain and its general-

ization, and between its self-reliability and its leveraging of external—i.e.

supposedly reliable—program texts.

In another ACM publication, Kristiina Karvonen argues for simplicity

not just as a concrete design goal, as leveraged by human-computer inter-

face designers48, but as a term with a longer history within the tradition

of aesthetic philosophy, especially the work of Johann Joachim Winckel-

mann (Karvonen, 2000). In particular, she stresses the difficulty ”to create

significant, that is, beautiful works of art with simple means” (Karvonen,

2000). Here, we take her correlation between significance and beautiful in a

very literalmanner; a connection between significance and beauty hints at

the semantic role of beauty, and thus of simplicity as a component of the

beautiful, at the role of beauty as a means to communicate (i.e. to signify)

ideas to an audience.

Precisely, simplicity is correlatedwith clarity (ofmeaning); if the former

refersmainly to the syntactical and ontological components, it enables the

non-obfuscated representation of the ideas at play in the function of a pro-

gram text. An example of clarity is given in 28 by Dave Bush in a post titled

15 Ways to Write Beautiful Code.

Here, the strive for simplicity implies removing the brackets, and flip-

48The field of human-computer interfacing does not limit itself to graphical user inter-

faces; a software library can act as textual interface between a human and amachine system.

118

void SomeMethod(int x, int y){
if(x != y){

//-- stuff
}

}

void SomeClearerMethod(int x, int y){
if(x == y) return;
//-- do stuff

}

Listing 28: Example of clarity differences between two methods.

ping theboolean check in the if-statement to addanearly return statement.

Even though it is, strictly speaking, more characters than the brackets and

newline (six characters compared to four), the program becomes cleaner,

and thus clearer, by trading syntactical simplicity for ontological simplic-

ity. Bush argues, by separating the two branching cases inherent to the use

of conditional logic, under the form of an if-statement. In the second ver-

sion, it is made clear that, if a condition is true, the execution should stop,

and any subsequent statement can entirely disregard the existence of the

if-statement; in the first version, the condition that is not true is entangled

with code that should be executed, since the existence of the if-statement

has to be kept in mind until the closing bracket, at the bottom of the pro-

gram text (Bush, 2015).

A final insight on simplicity and programming regarding the commu-

nication of ideas is hinted at by Richard P. Gabriel in his use of the concept

of compression in both poetry and programming. He argues that program-

mers have a desire to increase the semantic charge (or significance, in Kar-

vonen’s terms) all the while reducing the syntactic load (or the quantitity

of formal tokens). Compression, as we will see in 4.3.2, implies simplicity,

but also qualifies such simplicity in terms of how much is expressed by a

simple statement. The more complex the problem the program intends to

solve, themore important the role simplicity plays in communicating such

complexity. William J. Mitchell sums it up in his introductory textbook for

119

graphics programming:

Complex statements have a zen-like reverence for perfect simplic-

ity of expression. (Mitchell, 1987)

Simplicity is found in source code when the syntax and the ontologies

used are an exact fit to the problem: simple code is code that is neither too

precise, nor too generic, displaying an understanding of and a focus on the

problem domain, rather than the applied tools.

Cleverness

Conversely, the intellectual nature of a programmer’s practice often in-

volves technical tricks. Even though programming is both a personal and

collective activity, there is a tendency of programmers to rely on convo-

luted, ad hoc solutions which happen to be quick fixes to a given problem,

butwhich can also be difficult to generalize or graspwithout external help.

Such an external help often takes the form explanation, and is not often

positively valued, as pointed out online by Mason Wheeler:

When it requires a lot of explanation like that, it’s not ”beautiful

code,” but ”a clever hack.” (Overflow, 2013)

This answer, posted on the software engineering Stack Exchange fo-

rum, in response to the question ”How can you explain ”beautiful code”

to a non-programmer?” (Overflow, 2013), not only highlights the ideal for a

program text to be self-explanatory, but also points at a quality departing

form simplicity—cleverness.

Cleverness is often found, and sometimes derided, in examples of code

written by hackers, since it unsettles this balance between precision and

generality. Clever code would tend towards exploiting particularities of

knowledge of the medium (the code) rather than the goal (the problem).

Hillel Wayne presents the snippet of Python code reproduced in 29 as an

example of clever, and therefore bad, code:

120

def is_unique(_list):
return len(set(_list)) == len(_list)

Listing 29: unique.py: A function to check for the uniqueness of array el-

ements, using a very specific feature of the Python syntax, and as such an

example of clever code.

From the name of the function, is_unique(), one can deduce that what

the program text does is returningwhether all elements of a list are unique.

However, to understand the particular way inwhich this is done, thewriter

requires knowledge of how the set() function in Python behaves. A pro-

grammer without familiarity with Python would be unable to do so with-

out consulting the Python documentation, or through external explana-

tion.

Hillel elaborates on the difference between ”bad” clever code49, which

is essentially read-only due to its idiosyncracy and reliance on tacit knowl-

edge, and ”good” clever code, and such distinction corroborates our previ-

ous observations regarding beautiful code as ameans for expression of the

problem domain. His example is that the problem of sorting the roughly

300 million U.S. american citizens by birthdate can be made considerably

more efficient by cleverly considering that noU.S. american citizen is older

than 120 years, whereby radically reducing the computation space.

In other contexts, cleverness can be valued positively. Hacker practices

in particular tend to put more emphasis on the technical solution than

on the problem domain, as we have saw in 2.1.2. A salient is example was

the 1994 smr.c entry to the IOCCC, which aimed at being the smallest self-

reproducing program (Kanakarakis, 2022). An exact reproduction of the

source code can be found in 30

49See, for instance, Duff’s device, an idiosyncratic and language-specific way to speed up

loop unrolling in C. The author himself feels ”a combination of pride and revulsion at this

discovery” (Duff, 1983)

121

Listing 30: smr.c

Consisting of a file weighing zero bytes, smr.c provides both a clever re-

duction of the problemdomain, and a clever understanding ofwhatC com-

pilers would effectively accept or not as a valid program text (Kanakarakis,

2022), resulting in a particular confusion to the reader (and jury). Because

it has since been banned under the rules of the IOCCC, this source code

entirely renounces any claim to a more general application, and finds its

aesthetic value only within a specific socio-technical environment.

Elegance

Programmers hold the idea of reaching a aesthetic quality through the re-

duction of complex syntactical and ontological constructs, without mini-

mizing expressivity. This strive towards attaining an inverse relationship

between the complexity of an idea and the means to express it is contigu-

ous to another related criteria for beautiful source code present in pro-

grammers’ discourse: elegance. Such an ideal is clearly rooted in the defi-

nition of elegance given by the Jargon File, also known as the hacker’s dic-

tionary:

elegant: adj.

[common; from mathematical usage] Combining simplicity,

power, and a certain ineffable grace of design. Higher praise than

’clever’, ’winning’, or even cuspy.

The French aviator, adventurer, and author Antoine de Saint-

Exupéry, probably best known for his classic children’s book The

Little Prince, was also an aircraft designer. He gave us perhaps

the best definition of engineering elegance when he said “A de-

122

signer knows he has achieved perfection not when there is noth-

ing left to add, but when there is nothing left to take away.” (4.4.7,

2003)

Leslie Valiant, recipient of the Turing Award in 2010, considers elegance

as the explanatory power of simple principles, which might only appear

a posteriori—a solution can only be qualified as elegant once it has been

found, and very rarely during the process of its development(Anthes, 2011).

Chad Perrin, in his article ITLOG Import: Elegance, first approaches the

concept as a negation of the gratuitous, a means to reduce asmuch as pos-

sible the syntactic footprint while keeping the conceptual load intact:

In pursuing elegance, it is more important to be concise than

merely brief. In a general sense, however, brevity of code does ac-

count for a decent quick and dirty measure of the potential el-

egance that can be eked out of a programming language, with

length measured in number of distinct syntactic elements rather

than the number of bytes of code: don’t confuse the number of

keystrokes in a variable assignment with the syntactic elements

required to accomplish a variable assignment. (Perrin, 2006)

Perrin also hints at the additional meaningfulness of elegance, as he

compares it to other aesthetic properties, such as simplicity, complexity or

symmetry. If simplicity inhabits a range between too specific and too gen-

eral, he describes an elegant system as exactly appropriate for the task at

hand, echoing others’ definition of clean or simple source code. Elegance,

he says, relies on strong, underlying principles, but is nonetheless subject

to its manifestation through a particular, linguistic interface. While he

touches at length on the influence of progamming languages in the pos-

sibility to write elegant source code, we will only address this question in

5.1.1.

Donald Knuth adds another component required to achieve elegance in

software: along with leanness of code and the suitability of the language,

123

headds that elegancenecessitates a clear definitionof theproblemdomain

(Fuller, 2008). Alongwith the appropriateness of the linguistic tooling, one

can see here that the representation of the data which is then going to be

processed by the executed source code also matters. Source code is not

only about expressing dynamic processes, but also about translating the

problemdomain into formal static representationswhichwill then be easy

to operate on. Ideally, elegant code communicates the problem it solves

and the machinery of its solution, all through a single lens.

This aspect of implying underlying principles is also present in Bruce

McLennan’s discussion of the concept. He also adds to this perspective a

certain subjective feeling.He defines his Elegance Principle as:

Confine your attention todesigns that lookgoodbecause they are

good. (McLennan, 1997)

Such a definition relies heavily on the sensual component of ele-

gance: while an underlying property of, at least, human activities, it must

nonetheless be manifested in some perceptible way. Interestingly, he ap-

proaches elegance through the dual lens of structural and software engi-

neering, this indicates that he also considers elegance as a more profound

concept which can manifest itself across disciplines, connecting ways of

making, and ways of thinking (McLennan, 1997).

bothOn Stackexchange, user asoundmove corroborates this conception

of achieving a simple and clean system where any subsequent modifica-

tion would lead to a decrease in quality:

However to me beautiful code must not only be necessary, suffi-

cient and self-explanatory, but it must also subjectively feel per-

fect & light. (Overflow, 2013)

Connected to simplicity by way of necessity and sufficiency, the per-

ception of elegance is also related to a subjective feeling of adequacy, of

fitting. Including some of the definitions of simplicity we have seen so

124

int factorial(int n)
{
return n==0 ? 1 : n * factorial(n-1);

}

Listing 31: factorial.c: The use of recursion, rather than iteration, in the

computation of a factorial is particularly praised by programmers.

far, Paul DiLascia, writing in the Microsoft Developer Network Magazine,

illustrates his conception of elegance—as a combination of simplicity, ef-

ficiency and brilliance—with recursion (DiLascia, 2019), as seen in 31.

Recursion, or the technique of defining something in terms of itself, is a

very positively valued feature of programming (Abelson et al., 1979), which

we have seen an example of in 17. In so doing, it minimizes the number of

elements at play and constrains the problem domain into a smaller set of

moveable pieces. Another example, provided in the same Stackexchange

discussion is the quicksort algorithm, which can be implemented recur-

sively or iteratively, with the former being significantly shorter (see 32)

Going back to the personal factor in perceiving elegance, we can fol-

low Mahmoud Efatmaneshik and Michael J. Ryan who, in the IEEE Sys-

tems journal, offer a definition of elegancewhich relies both on a romantic

perception—including subjective perception, ”gracefulness”, ”appropriate-

ness” and ”usability”—and practical assessment with terms such as ”sim-

ple”, ”neat”, ”parsimonious” or ”efficient” (Efatmaneshnik & Ryan, 2019). In

doing so, they ground source code aesthetics as a resolutely dualistic norm,

between subjectivity and objectivity, qualitative and quantitative, a dual-

ity whose implications are developed in 3.2.

And yet, rather than subjectivity and objectivity being opposites, one

could also consider them as contingent. Due to the interchangeability

in the use of the some of the terms we have seen by programmers, both

qualitative—in terms of the language used—and quantitative—in terms

of the syntax/semantics ratio—assessments of source seem to be comple-

125

public static void recursiveQsort(int[] arr,Integer start, Integer
end) {↪→

if (end - start < 2) return; //stop clause
int p = start + ((end-start)/2);
p = partition(arr,p,start,end);
recursiveQsort(arr, start, p);
recursiveQsort(arr, p+1, end);

}

public static void iterativeQsort(int[] arr) {
Stack<Integer> stack = new Stack<Integer>();
stack.push(0);
stack.push(arr.length);
while (!stack.isEmpty()) {

int end = stack.pop();
int start = stack.pop();
if (end - start < 2) continue;
int p = start + ((end-start)/2);
p = partition(arr,p,start,end);

stack.push(p+1);
stack.push(end);

stack.push(start);
stack.push(p);

}
}

Listing 32: The comparison two functions, one using recursion, the other

one using iteration, intends to show the computational superiority of re-

cursion. (amit, 2012).

126

openParen = (slash + asterix) / equals;

Listing 33: Choose variable names thatmasquerade asmathematical oper-

ators

mentary in considering it elegant. If clean, simple, elegant seem to overlap,

it is because they all seem to point at this maximization of meaning while

appropriately minimizing , written by one for another.

Smells

A complementary approach to understandwhat programmersmeanwhen

they talk about beautiful code is to look beyond the positive terms used

to qualify it, and shift our attention to negative qualifiers. We have al-

ready touched upon terms such as clever, or obfuscated, which have am-

biguous statuses depending on the community that they’re being used in—

specifically hackers and literary artists. Further examination of negative

qualifiers will enrich of understanding of what constitutes good code; pro-

grammers have another way to refer to code that does not meet aesthetic

criteria, by referring to material properties.

One of those hints comes from satirical accounts of how to write bad

code. For instance, Green’s post on How To Write Unmaintainable Code

suggests new kinds of obfuscation, such as double-naming in 33 or seman-

tic interactions in 34. The core ideas presented here revolve around creat-

ing as much friction to understanding as possible, bymaking it ”as hard as

possible for [the reader] to find the code he is looking for” and ”as awkward

as possible for [the reader] to safely ignore anything.” (Green, 2006).

By looking at it from the opposite perspective of highly-confusing code,

we see best how carefully chosen aesthetics, under the values of simplicity,

clarity, cleanliness and elegance intend first and foremost to help alleviate

humancognitive friction and facilitate understanding ofwhat the program

127

for(j=0; j<array_len; j+ =8)
{
total += array[j+0];
total += array[j+1];
total += array[j+2]; /* Main body of
total += array[j+3]; * loop is unrolled
total += array[j+4]; * for greater speed.
total += array[j+5]; */
total += array[j+6];
total += array[j+7];

}
\end{minted}

Listing 34: Code That Masquerades As Comments and Vice Versa

is doing. The opposite amounts to playing misleading tricks.

For instance, spaghetti code refers to a property of source code where

the syntax is written in such a way that the order of reading and under-

standing is akin to disentangling a plate of spaghetti pasta. While techni-

cally still linear in execution, this linearity loses its cognitive benefits due

to its extreme convolution, making it unclear what starts and ends where,

both in the declaration and the execution of source code. Rather than us-

ing a synonym such as convoluted, the image evoked by spaghetti is par-

ticularly vivid on a sensual level, as a slimy, vaguely structured mass, even

if the actual processes at play remain eminently formal (Steele, 1977). Such

a material metaphor is declinated in a similar way in Foote and Yoder’s

description of code as a ”big ball of mud”:

A Big Ball of Mud is a haphazardly structured, sprawling, sloppy,

duct-tape-and-baling-wire, spaghetti-code jungle. These systems

show unmistakable signs of unregulated growth, and repeated,

expedient repair. Information is shared promiscuously among

distant elements of the system, often to the point where nearly all

the important information becomes global or duplicated. (Foote

& Yoder, 1997)

A broader approach to these sensual perceptions of code involve the

128

reference to code smells. These smells are described by Martin Fowler as

”surface indications that usually corresponds to a deeper problem in the sys-

tem” (Fowler et al., 1999). They are aspects of source code which, by their

syntax, might indicate deeper semantic problems, without being explicit

bugs. The name code smell evokes the fact that their recognition happens

through intuition and experience of the programmer reading the code, in-

visible yet present, rather than through careful empirical analysis50. This

points to a practice-based skill system to evaluate the quality of source

code, rather than to an evidence-based one, itself circling back to the qual-

ifications of elegance discussed above, evaluated both as quantitativemet-

ric and as qualitative one.

In conclusion, this section has clarified some of the key terms used in

programmers’ discoursewhen discussing aesthetically pleasant code. Bas-

ing our interpretation of the gathered sources through discourse analysis,

we specifically assumed a cooperative principle, in which all participants

in the discourse intend to achieve writing the best source code possible.

This analysis has confirmed and updated the findings of Piñeiro’s earlier

study: excellence in instrumental action forms the core of writing source

code, but can also be declinated along different contexts of reading and

writing. Across textbooks, blog posts, forums posts and trade books, the

aesthetic properties of code are widely acknowledged and, to a certain ex-

tent, consistent in the adjectives used to qualify it (clean, elegant, simple,

clear, but also clever, obscure, or smelly).

While there is a consistency in describing the means of beautiful code,

by examining a lexical field with clear identifiers, this analysis also opens

up additional pathways for inquiry. First, we see that there is a relation-

ship between formal manifestations and cognitive burden, with aesthetics

helping alleviate suchaburden. Beautiful code renders accessible the ideas

50It should be noted thatmore recent computer science research has recently also focused

on developing such empirical techniques (Rasool & Arshad, 2015), even though their practical

usefulness is still debated (Santos et al., 2018)

129

embedded in it, and theworld inwhich the code aims to translate andoper-

ate on. Additionally, the negative adjectives mentioned when referring to

the formal aspects of code (smelly, muddy, entangled) are eminently ma-

terialistic, indicating some interesting tension between the ideas of code,

and the sensuality of its manifestation.

Moving beyond strict lexical tokens, we can see in the breadth of re-

sponses in a programmer’s question of ”How can you explain ”beautiful

code” to a non-programmer?” (Overflow, 2013) that programmers also rely

multiple aesthetic domains to which they refer: from engineering and lit-

erature to architecture and mathematics. As such, they deploy metaphors

for what beautiful code is. Moving from a syntactical level to a thematical

level, to refer to Kintsch and Van Dijk’s framework of discourse analysis,

we now turn to an investigation of each of these domains, and what they

tell us about source code.

2.3 Aesthetic domains

The qualifiers programmers use when they relate to the aesthetic qualities

of source code (the way it looks) or the aesthetic experience that it elicits

(the way they feel) has shown both a certain degree of coherence, and a

certain degree of elusiveness. Subjectively, programmers associate their

experience of encountering well-written code as an aesthetic one. How-

ever, on a normative level, things become complicated to define: as we

have seen in the previous section’s discussion of forum exchanges, beauty

in source code is not explicited in and of itself.

The next step we propose is to inquire into the specific domains that

programmers use to illustrate the qualities of source code; we will exam-

ine in which capacity these are being summoned in relation to code, and

how they help us further delineate the aesthetic qualities of source code.

The assumption here is that a medium—such as source code—is a means

130

of expression, and differentmediums can support different qualities of ex-

pression; additionally, a comparative analysis can be productive as it re-

veals the overlaps between these mediums. Since there seems to be some

specific ways in which code can be considered beautiful, these adjacent

domains, and the specific parts of these domains which create this con-

tingency, will prepare our work of defining source code-specific aesthetic

standards.

To do so, then, we will look at the three domains most often conjured

by programmers when they mention the sensual qualities of, or the aes-

thetic experiences elicited by, source code: literature, mathematics and

architecture. While there are accounts of parallels between programming

and painting (Graham, 2003) or programming and music(McLean, 2004),

these refer rather to the painter or musician as an individual, rather to the

specific medium, and there are, to the best of our knowledge, no account

of code being like sculpture, film, or dance, for instance.

2.3.1 Literary Beauty

The most striking, and obvious similarity between code and another

medium of expression is that of literature: perhaps because they both re-

quire, fundamentally, the use of alphanumeric characters laid out on a

two-dimensional plane. Similarly, they both involve syntax and semantics

interplay in order to convey meaning to a reader. Code as literature, then,

focuses on this similarity of natural language and computer language, on

its narrative, rhetorical and informative properties, and even on its ability

to mimick the traditional forms of poetry.

Code as a linguistic practice

In Geek Sublime, Vikram Chandra, novelist and programmer, lays out the

deep parallels he sees between code and human language, specifically san-

skrit. While stopping short of claiming that code is literature, he nonethe-

131

less makes the claim that sanskrit is, as a set of generative linguistic rules

to composemeaning, a distant ancestor to computer code (Chandra, 2014),

a fact corroboratedbyAgatheKeller inher studies of theĀryabha�a (Keller,

2021). Sanskrit, like computer code, relies on context-free rules and ex-

hibits similar properties as in code, such as recursion and inheritance.

With a similar syntactic structure between sanskrit and code, the for-

mer also exhibits a ”search for clear, unambiguous understanding” through

careful study, a goal shared by the writers of source code. Specifically, the

complexity of the linguistic system presented both in sanskrit and in ma-

chine language implies that enjoyment ofworks in eithermediumhappens

not through spontaneous, subjective appreciation, but through ”conois-

seurship”, resulting from education, experience and temperament (Chan-

dra, 2014).

Similarly, inWords Made Flesh: Code and Cultural Imagination, Florian

Cramer touches upon code’s ability to do things, in order to inscribe it

differently in a historical development of linguistics, connecting it to the

symbolical works of the kabbalah and Lebniz’s Ars Combinatoria. Code,

according to Cramer, is linguistic, not just because it is made up of words,

but because itacts uponwords, influencingwhatwe consider literature and

human-language writing:

The step from writing to action is no longer metaphorical, as it

would bewith a semantic text such as a political speech or aman-

ifesto. It is concrete and physical because the very code is thought

to materially contain its own activation; as permutations, recur-

sions or viral infections. (Cramer, 2003)

Those permutations and recursions are used in the different ways: nat-

ural language writers have attempted to apply formulas, or algorithms,

to their works, from the Oulipo’s Poèmes Algol to Cornelia Sollfrank’s

Net.Art Generator. The properties that Cramer identifies in machine lan-

guages, tensions between totality and fragmentation, rationalization and

132

occultism, hardware and software, syntax and semantics, artificial and

natural, are ascribed to thenewest development of the interaction between

program and expression, for instance through the shape of those combi-

natorial poetics (Cramer, 2003). This resemblance, or Familienähnlichkeit,

to other forms of linguistic expression, is explored further by Katherine

Hayles’ work on speech, writing and code. Specifically, she sees the linguis-

tic practices of humans and intelligence machines as influencing and in-

terpenetrating each other, considering code as language’s partner (Hayles,

2004).

Specifically, Hayles looks at how both literature and code can be ex-

pressive in both a syntagmatic and paradigmatic manner. In the former,

the meaning spread across the words of a sentence is considered fixed in

literature, while it is dynamically generated in source code, depending of

the execution state and the problem domain. In the latter, the meaning

across synonyms in a (program) text is always potential in literature, but

always present in code, thus highlighting different levels of interpretation

(Hayles, 2004). If code is a form of linguistic system, then it is a dynamic

one in which the semantic charge is at least as volatile as in literature, but

which possesses an additional dimension, as orality, literacy and digitality

succeed each other by bringing the specificity of their media.

Code can thus be considered a linguistic system in the technical sense,

having a syntactic ruleset operating on words, it seems to also be a lin-

guistic system in the cultural sense. As such, it deals with the occult, the

magical and the obscure, but also exhibits a desire to communicate and

execute unambiguous meaning.

This desire for explicit communication led literacy scholars to inves-

tigate source code’s relationship to rhetoric. While digital systems seem

to exhibit persuasive means of their own (Bogost, 2008) (Frasca, 2013), the

code that underpins them also presents rhetorical affordances. The work

of Kevin Brock andAnnette Vee in this domain has shown that source code

isn’t just a normative discourse to the machine, but also an argumentative

133

one with respect to the audience: it tries to persuade fellow programmers

of what it is doing. From points being made in large-scale software such

as Mozilla’s Firefox web browser, to more specific styles in job interviews,

source code presents worldviews in its own specific syntax (Brock, 2019).

The connections of code to linguistics happens thus at the technical

and cultural levels, insofar as it can allow for the expression of ideas and

arguments, straddling the line between the rational and the evocative. We

now turnmore specifically to two instances of program code being consid-

ered a literary text, by leading programmers in the field: Yukihiro ’Matz’

Matsumoto and Donald Knuth.

Code as text

Perhaps the most famous reference to code as a literary object is to be

found in Donald Knuth’s literate programming. In his eponymous 1984 ar-

ticle in The Computer Journal, Knuth advocates for a practice of program-

ming in which a tight coupling of documentation with source code can

allow one to consider programs as ”works of literature” (Knuth, 1984). It is

unclear, however, what Knuth entails when he refers to a work of litera-

ture51.

Literate programming, a direct response to structured programming,

enables the weaving of natural language blocks with machine language

blocks, in order to be able to comile a single source into either a typeset

documentation of the program, using the TeX engine, or into a source file

for a Pascal compiler. The literary, here, is only a new set of tools and

practices of writing which result in a publishable work, rather than a lit-

erary work, in which the program is described in natural language, with

source code being interspersed as snippets throughout. As this approach

fits within Knuth’s interest in typesetting and workflows of scientific pub-

51For instance, he refers in the rest of the article as ”constructing” programs, rather than

”writing” them.

134

lications, it first locates the relationship between literature and program-

ming beyond this formal level.

Still, his aim remains to support a clear understanding of a program

by its reader, particularly emphasizing the complexity of such tasks. If he

proposes somethingwith regards to literature, it is the process ofmeaning-

making through reading, and its cognitive implications:

This feature ofWEB is perhaps its greatest asset; it makes aWEB-

written program much more readable than the same program

written purely in PASCAL, even if the latter program is well com-

mented. [...] a programmer can now view a large program as a

web, to be explored in a psychologically correct order is perhaps

the greatest lesson I have learned from my recent experiences.

(Knuth, 1984)

For Knuth, then, code is a text: both in the traditional, publisher-

friendly way, but also in a new, non-linear way. This attention to themate-

riality of the program—layout, typesetting—foresees subsequent techno-

logical solutions to allow natural language and machine language to co-

exist52. We also note here the phrase ”psychologically correct order”, high-

lighting the psychological dimension involved in a programmer’s activity,

further developed in 3.2.3. Indeed, code is never read linearly, asmost code-

bases might have an entrypoint but no introduction53.

Moving away from this hybrid approach involvingbothnatural andma-

chine texts, Yukihiro Matsumoto, the creator of the Ruby programming

language, develops his notion of code as an essay in his contribution to

the edited volume Beautiful Code (Oram & Wilson, 2007). While he does

not deal directly with questions of eloquence and rhetoric, as opposed to

Brock and Vee, it does however start from the premise that code is a kind
52See JavaDocs, Go docs, Jupyter Notebooks
53”Having conducted interviews with several leadig programmers, Peter Seibel comes to

the conclusion: ”We don’t read code, we decode it. We examine it. A piece of code is not litera-

ture; it is a specimen.” (Seibel, 2014)

135

of text, insofar as it has an a message being conveyed in a written form to

an audience. However, it is not a kind of text which has a specific author,

or a specific finite state:

Most programs are not write-once. They are reworked and rewrit-

ten again and again in their lived. Bugs must be debugged.

Changing requirements and the need for increased functionality

mean the program itself may be modified on an ongoing basis.

During this process, human beings must be able to read and un-

derstand the original code. (Matsumoto, 2007)

This conception, in which a text remains open to being modified fur-

ther by subsequent voices, thus minimizing the aura of the original ver-

sion, and possibly diluting the intent of the original author, echoes the

distinction made by Roland Barthes between a text lisible (readerly text)

and texte scriptible (writerly text) (Barthes, 1977). While the former aligns

with classical conceptions of literature, with a clear author and life span

for the literary work, the latter remains open to subsequent, subjective ap-

propriations. It is these appropriations, or uses, that give a writerly text its

value.

This appropriation is such that amodified program text does not result

in a finite program text either; due to its very low barrier to modification

and diffusion, program texts can act almost as a dialogue between twopro-

grammers. As Jesse Li puts it, building the linguistic theory of Volonishov

and Bakhtin:

Themalware author is in dialogue with themalware analyst. The

software engineer is in dialogue with their teammates. The user

of a piece of software is in dialogue with its creator. A web ap-

plication is in dialogue with the language and framework it is

written in, and its structure is mediated by the characteristics of

TCP/IP and HTTP. And in the physical act of writing code, we are

136

in dialoguewithour computer anddevelopment environment. (Li,

2020)

It is to support this act of dialogue, supported by code’s affordance of

rapidmodification and redistribution, thatMatusmoto highlights simplic-

ity, brevity—his term for elegance— and balance asmeans to achieve writ-

ing beautiful code. His last criteria, lightness, applies not to the code be-

ing written, but to the language being used to write such code, adding one

more dimension to the dialogue: between the writer(s), the reader(s) and

the language designer(s), an additional aspect we will return to in 5.1.3.

These two examples argue that source code can be considered a text

which needs to accomodate a hybrid of natural and machine languages,

newmodes of diffusion, and countless possibilities for being rewritten. In

this technological environment of programming languages (from WEB to

Ruby), the aim is to facilitate the understanding of what the program does,

and ofwhat it should do, providing cognitive cues for the programmerwho

will re-use or modify the program.

There is, however, a remnant of readerly texts in the literary conception

of source code. Beyond these theoretical and functional conceptions of

code’s textuality, a last approach to the literariness of source code can be

found in the works of code poetry, in which this ambiguity is embraced.

Code poetry

Daniel Temkin, in his Sentences on Code Art54, suggests the ways in which

code art (encompassing code poetry, esoteric languages and obfuscated

code, among others) touches on code’s linguistic features mentioned by

Chandra and Cramer, while coming at it from a non-functional perspec-

tive, radically opposed to Knuth and Matsumoto.

The ambiguity of human language is present in code, which never

fully escapes its status as human writing, even when machine-
54A direct reference to Sol Lewitt’s Sentences on Conceptual Art.

137

generated. Webring to code our excesses of language, and anam-

biguity of semantics, as discerned by the human reader. (Temkin,

2017)

The artists whosemainmedium is source code explore the possibilities

of meaning-making through mechanisms usually associated with poetry,

in both its spoken, written and executed form55. Code poetry is a partic-

ular kind of writing source code, one which is focused on the evokative

possibilities of machine languages, an the generative interpretation of its

human readers, and away from an explicitly productive function. This is a

step further in a direction of semantic possibilities hinted at by Richard P.

Gabriel when he mentions the parallels between writing code and writing

poetry; in an interview with Janice J. Jeiss, he states:

I’m thinking about things like simplicity – how easy is it going to

be for someone to look at it later? Howwell is it fulfilling the over-

all design that I have in mind? How well does it fit into the ar-

chitecture? If I were writing a very long poem with many parts, I

would be thinking, ”Okay, how does this piece fit in with the other

pieces? How is it part of the bigger picture?”. When coding, I’m do-

ing similar things, and if you look at the source code of extremely

talented programmers, there’s beauty in it. There’s a lot of atten-

tion to compression, using theunderlyingprogramming language

in a way that’s easy to penetrate. Yes, writing code and writing

poetry are similar. (Jeiss, 2002)

Further exploring the semantic possibilities of considering source code

as a possiblemedium for poetic expression, one can turn to the analyses of

code poems in publications such as Ishaac Bertram’s edited volume, code

{poems} and Nick Montfort’s collected poems in #!.

55Evidently, code works like poetry in that it plays with structures of language itself, as well

as our corresponding perceptions. (Cox, 2011)

138

print”a”x++$...$”x$.,$,=_;redo

Listing 35: All The Names of God, Nick Montfort, 2010, source

In the former’s foreword, Jamie Allen develops this ability to express

oneself via machine languages, considering that programmers can have

”passionate conversations in Python” or ”with a line in a text file [...] speak

directly to function, material action, and agency” (Bertram, 2012). This is

done, not by relying on the computer as a generative device, but by har-

nessing from the formand subjectmatter of those verymachine languages

which subsequently can exhibit those generative properties. Focusing on

the language part of the machine allows for an interplay between human

and machine meanings.

Still, machine semantics are considered an essential device in writing

code poetry, and exploring concepts that are not easily grasped in natu-

ral languages—e.g. callbacks, asynchronous promises or destructuring as-

signments. Additionally, the contrast between the source representation

of the poem and its execution can add to the poetic tension, as we saw in

24, and here in Nick Montfort’s All The Names of God (2010) (source in 35,

and output in 36).

This poem is the object of close literary critical examination by Maria

Aquilina, who notes that [t]he contrast between the economicalminimalism

of the program and the ordered but infinite series of letter combinations it

produces is one of the aspects that make the poem striking (Aquilina, 2015).

Building on philosophy and literary theorists, Aquilina situates the expres-

sive power of the poem in its engagement with the concept of eventual-

ization, locating the semantic load of the poem in its existence both in a

human-perception of the non-human (e.g. computer time) and the dia-

logue between source, output and title (Aquilina, 2015). In between an infi-

nite output and a one-line hack,All TheNames ofGod is in the formmonos-

139

_atk_atl_atm_atn_ato_atp_atq_atr_ats_att_atu_atv_atw_atx_aty_atz_au ⌋
a_aub_auc_aud_aue_auf_aug_auh_aui_auj_auk_aul_aum_aun_auo_aup_a ⌋
uq_aur_aus_aut_auu_auv_auw_aux_auy_auz_ava_avb_avc_avd_ave_avf_ ⌋
avg_avh_avi_avj_avk_avl_avm_avn_avo_avp_avq_avr_avs_avt_avu_avv ⌋
_avw_avx_avy_avz_awa_awb_awc_awd_awe_awf_awg_awh_awi_awj_awk_aw ⌋
l_awm_awn_awo_awp_awq_awr_aws_awt_awu_awv_aww_awx_awy_awz_axa_a ⌋
xb_axc_axd_axe_axf_axg_axh_axi_axj_axk_axl_axm_axn_axo_axp_axq_ ⌋
axr_axs_axt_axu_axv_axw_axx_axy_axz_aya_ayb_ayc_ayd_aye_ayf_ayg ⌋
_ayh_ayi_ayj_ayk_ayl_aym_ayn_ayo_ayp_ayq_ayr_ays_ayt_ayu_ayv_ay ⌋
w_ayx_ayy_ayz_aza_azb_azc_azd_aze_azf_azg_azh_azi_azj_azk_azl_a ⌋
zm_azn_azo_azp_azq_azr_azs_azt_azu_azv_azw_azx_azy_azz_baa_bab_ ⌋
bac_bad_bae_baf_bag_bah_bai_baj_bak_bal_bam_ban_bao_bap_baq_bar ⌋
_bas_bat_bau_bav_baw_bax_bay_baz_bba_bbb_bbc_bbd_bbe_bbf_bbg_bb ⌋
h_bbi_bbj_bbk_bbl_bbm_bbn_bbo_bbp_bbq_bbr_bbs_bbt_bbu_bbv_bbw_b ⌋
bx_bby_bbz_bca_bcb_bcc_bcd_bce_bcf_bcg_bch_bci_bcj_bck_bcl_bcm_ ⌋
bcn_bco_bcp_bcq_bcr_bcs_bct_bcu_bcv_bcw_bcx_bcy_bcz_bda_bdb_bdc ⌋
_bdd_bde_bdf_bdg_bdh_bdi_bdj_bdk_bdl_bdm_bdn_bdo_bdp_bdq_bdr_bd ⌋
s_bdt_bdu_bdv_bdw_bdx_bdy_bdz_bea_beb_bec_bed_bee_bef_beg_beh_b ⌋
ei_bej_bek_bel_bem_ben_beo_bep_beq_ber_bes_bet_beu_bev_bew_bex_ ⌋
bey_bez_bfa_bfb_bfc_bfd_bfe_bff_bfg_bfh_bfi_bfj_bfk_bfl_bfm_bfn ⌋
_bfo_bfp_bfq_bfr_bfs_bft_bfu_bfv_bfw_bfx_bfy_bfz_bga_bgb_bgc_bg ⌋
d_bge_bgf_bgg_bgh_bgi_bgj_bgk_bgl_bgm_bgn_bgo_bgp_bgq_bgr_bgs_b ⌋
gt_bgu_bgv_bgw_bgx_bgy_bgz_bha_bhb_bhc_bhd_bhe_bhf_bhg_bhh_bhi_ ⌋
bhj_bhk_bhl_bhm_bhn_bho_bhp_bhq_bhr_bhs_bht_bhu_bhv_bhw_bhx_bhy ⌋
_bhz_bia_bib_bic_bid_bie_bif_big_bih_bii_bij_bik_bil_bim_bin_bi ⌋
o_bip_biq_bir_bis_bit_biu_biv_biw_bix_biy_biz_bja_bjb_bjc_bjd_b ⌋
je_bjf_bjg_bjh_bji_bjj_bjk_bjl_bjm_bjn_bjo_bjp_

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Listing 36: All The Names of God, Nick Montfort, 2010, Selected output

140

tiche, a natural language poem composed of a one-line stanza, where the

quality aesthetic quality of minimalism is correlated with its expressive

power.

Not only is there an aesthetic of minimalism present in the source, the

output also represents the depth (in Hayles’s sense) of the medium of writ-

ing. In this case, source code also supports academic literary analysis, thus

reinforcing a literary conception of source code aesthetics.

From software developers to artists, different kinds of writers seem to

equate code as a text, bringing forthmultiple reasons to justify such a con-

nection. Beyond the fact that source code ismade up of textual characters,

we see that these conceptions of code as literature are multiple. One per-

spective is focused on its need to communicate explicit concepts related

to its function (Knuth, Matsumoto, Brock), while a complementary persec-

tive embraces the semantic ambiguity which exists in the use of natural

language tokens, backed-up by the potential executable semantics enabled

by its machine nature (Cramer, Hayles, Montfort, Temkin).

This tension, between functional efficiency of the text, and dramatic

expressiveness of the poem, suggests a parallel with scientific practices,

this is something that Andrei Ershov points to in his 1972 address to the

Joint Computer Conference:

”A professional aesthetic influences and is influenced by the eth-

ical code of a profession, by the technical subject matter of the

profession, and by the profession’s juridical status. [...] The cre-

ative nature of programming does not require special proof. In-

deed, I may assert, programming goes a little further than most

other professions, and comes close to mathematics and creative

writing.” (Ershov, 1972)

141

2.3.2 Scientific beauty

Rooted in computer science’s thought and practice, the aesthetic experi-

ences of source code are also related to the scientific domain. Specifically,

it seems to exist in two distinct ways: whether code is beautiful in a similar

way that mathematics is, or whether code is beautiful according to princi-

ples at play in engineering.

Mathematics

A recurring point in programmers’ discussions of beauty in programming

is oftentimes the duality of the object of discussion: is one talking about

an algorithm, or about a particular implementation of an algorithm? While

this thesis is concerned with the latter, we now turn to how this relation-

ship between algorithm and implementation presents a similar tension as

the relationship between theorem and proof in mathematics.

Among the few discourses of a direct relation between code and beauty

from a mathematical perspective, we can see Edsger Dijkstra’s discussion

of the implementation of programming languages. In it, he starts from

computer science’s strong origin in mathematics (e.g. lambda calculus), to

show that this relation exists in part through, again, the concept of ele-

gance. Theorems and subroutines are compared as being similar essential

building blocks in the construction of a correct system. Correctness as the

ultimate aimof bothmathematics andprogramming takes place, hewrites,

by the use of a limited, efficient amount of those building blocks, result-

ing in a set of small, general and systemic concepts, in an elegant structure

(Dijkstra, 1963).

This parallel between source code and mathematics becomes clearer

when looking at the kinds of aesthetic effects which mathematics pos-

sess. Gian-Carlo Rota, in his investigation into mathematical beauty, dis-

tinguishes betweenmathematical beauty, a propertywhich in turn triggers

an aesthetic experience, and mathematical elegance, the concrete imple-

142

mentation thereof.

Although one cannot strive for mathematical beauty, one can

achieve elegance in the presentation of mathematics. In prepar-

ing to deliver a mathematics lecture, mathematicians often

choose to stress elegance and succeed in recasting the material

in a fashion that everyone will agree is elegant. Mathematical el-

egance has to do with the presentation of mathematics, and only

tangentially does it relate to its content. (Rota, 1997)

This separation between the beauty of a mathematical concept (the-

orem) and its presentation (proof) is reflected in the separation between

algorithm and computer program, as McAllister notes. According to him,

the beauty of source code is considered closer to the beauty inmathemati-

cal proofs, and as such abides by norms of exactness (over approximation)

and transparency (over cumbersoneness) (McAllister, 2005).

Specifically, mathematical proofs are supposed to fulfill the require-

ment of whatMcAllister calls graspability, that is, the tendency for a proof

to have the theorem it depends on grasped in a single act of mental appre-

hension by the reader. This, in turn, provides genuine understanding of

the reasons for the truths of the theorem. When seen as a form a math-

ematical beauty, code is therefore praised in being to convey its function

through concrete syntax; and linking aesthetic satisfaction with an econ-

omy of thought.

The first to employ such an expression, the mathematician Henri

Poincaré describes the rigor of a mathematical process as subsequently

obtained by combining this economy of thought, a form of cognitive el-

egance, with the concept of harmony (Poincaré, 1908). By virtue of mathe-

matics being based on formal languages, this linguistic component intro-

duces a certain kind of structure, and the complexity of the problem do-

main ismademore harmonious by the reliance on such an invariant struc-

ture (i.e. the syntax of the formal language used). Source code as mathe-

143

template <std::size_t V>
auto floyd_warshall(std::array<std::array<int, V>, V> const &graph) {

auto dist = graph;

for(auto k: std::views::iota(0u, V))
for(auto i: std::views::iota(0u, V))

for(auto j: std::views::iot(0u, V))
if(dist[i][k] + dist[k][j] < dist[i][j])

dist[i][j] = dist[i][k] + dist[k][j];

return dist;
}

Listing 37: Implementation of the Floyd-Warshall algorithm, showing an

elegant implementation of a complex theory.

matics can thus be seen as a cognitive structure, which the elements, based

on formal linguistics, can exhibit elegant aspects in their communication

of a broader concept.

One can find such connections betweenmathematical and source code

elegance in their conciseness to express established, complex ideas. For

instance, the implementation of the Floyd-Warshall algorithm reproduced

in 37 is considered by Sy Brand as eliciting an aesthetic experience (CPPP

Conference, 2022).

Brand’s discussion of his aesthetic experience highlights another as-

pect of source code beauty: intellectual engagement. In order to appreci-

ate the aesthetics of a program text, one needs to taking an active stance

and understand what it is that the code (in the case of 37 does, the func-

tion) is trying to do. Once that is understood, one can then appreciate the

way in which the algorithm is implemented—that is, its aesthetics.

Engineering

As we have seen in our discussion of the relationship between computer

science and programming as a relationship between the abstract and the

concrete, one can see in these two activities a parallel in mathematics

144

and engineering, considered as both scientific endeavours. Engineering

is, like programming, the concrete implementation backed by deliberate

and careful planning, often with the help of formal notations, of a solution

to a given problem56. Mathematics, from this perspective, can be consid-

ered as one of the languages of engineering, among sketches, diagrams,

techniques, tools, etc.

Nonetheless, one of the central concepts in the practice of mathemat-

ics, elegance, can also be found, along with its connection to source code,

in engineering. BruceMcLennan examines such a connection from amore

holistic angle than that of a single act of mental apprehension, when look-

ing at a proof. He suggests that aesthetics in engineering also play a cog-

nitive role:

Since aesthetic judgment is a highly integrative cognitive process,

combining perception of subtle relationships with conscious and

unconscious intellectual and emotional interpretation, it can be

used to guide thedesignprocess by forminganoverall assessment

of themyriad interactions in a complex software system. (Schum-

mer et al., 2009)

His point is that software is too complex to be easily verified, and that

tools to help us do so are still limited. This complexity sets our intuition

adrift and analytical resources are not always enough to understand what

is going on in a given program text. In order to handle this, he proposes

to shift the attention from an analytical to phenomenological one, from

the details to the general impression. Engineering, like mathematics, ul-

timately aim at being correct, albeit in different ways. While the latter

can rely on succint formal propositions and representations to achieve this

purpose, engineering composes toomanymoving parts of different nature.

56Indeed, software development is also referred to as software engineering (Bourque &

Fairley, 2014); we chose to refer to the former due to its referencing to a broader set of prac-

tictionners.

145

The specificity lies in the nature of software engineering’s materials:

All arts have their formal and material characteristics, but soft-

ware engineering is exceptional in the degree to which formal

considerations dominate material ones. (Schummer et al., 2009)

Andyet, the development of his arguments remains on thephenomeno-

logical side, distant from the standards of mathematic abstraction. In en-

gineering, he argues, the design looks unbalanced if the forces are unbal-

anced, and the design looks stable if it is stable. By restricting our attention

to designs in which the interaction of features is manifest—in which good

interactions look good, and bad interactions look bad—we can let our aes-

thetic sense guide our design, relying on concepts of efficiency, economy

and elegance (McLennan, 1997).

The sciences, and specifically mathematics and engineering, have their

own set of aesthetics standards, to which source code seems to be con-

nected to. Still, the idea of elegance remains central to both mathematical

and engineering approaches, as itmeasures thenumber and conciseness of

the theory’s basic principles, or of the structure’s basic components, while

keeping the need for an overall effect, whether as enlightenment formath-

ematics, in which larger implications are gained from a particular way a

proof of a theorem is presented, or as an ecompassing gestalt impression

in engineering, in which a program that looks correct, would most likely

be correct.

Two concepts touched upon by both approaches are that of structure

and know-how. While mathematics deal with formal structures to repre-

sent and frame the complexity of the world, engineering deals with con-

crete structures offered as solutions to a specific problem. In both do-

mains, there is also a reference to a certain sense of intuition, which en-

ables cognitive discovery of a functional artefact (whether amabstract the-

orem or a concrete construction), something we also find when exploring

parallels with architecture

146

2.3.3 Architectural beauty

Beyond a more official understanding of software architecture (see 2.1.1),

architecture is used extensively as a metaphor for code. In this section, we

will look at architecture from two complementary perspectives: as a top-

down approach, and as a bottom-up practice. This will allow us to touch

on notions of structure, form and function, and provides us with another

perspective which will bring into light the idea of craft.

Formal organization

Software architecture emerged as a consequence of the structured revolu-

tion (Dijkstra, 1972), which was concerned more with the higher-level or-

ganization of code in order to ensure the quality of the software produced.

Such an assurance was suggested by Dijkstra in two ways: by ensuring the

provability of programs in a rigorously mathematic approach, and by en-

suring that programs remained as readable as possible for the program-

mers. Structure, complementing syntax, has therefore been an essential

component of the intelligibility of software since the 1970s. It is only in

the late 1990s that software architecture has been recognized as a distinct

discipline, and completely separated from the actual act of programming.

[...] software architectural models are intended to describe the

structure and behavior of a system in terms of computational en-

tities, their interactions and its compositionpatterns, so to reason

about systems at more abstract level, disregarding implementa-

tion details. (Garland, 2000)

When Mary Shaw and David Garland publish their 1996 book Software

architecture : perspectives on an emerging discipline, they mark the be-

ginning of a trend of so-called architectural practices within the field of

software development. These two fields overlap on the topic of structure.

Through rigorous, high-level formal organization, the idea was to bring in

147

a more normative approach to writing code, in the hope that this struc-

ture would support correctness and efficiency. Building on this need for

structure, software architecture has thus developed into an approach to

software patterns, modelling and documentation, through the overall pro-

cesses, communications, inputs and outputs of a system can be formally

described and verified.

As an example, the Linux Kernel’s architecture can be considered one

of the reasons why the project became so popular once integrated into the

GNU ecosystem. Alongwith its distribution license, two of its defining fea-

tures are speed and portability. While speed can be attributed to its use of

C code, also responsible to some extent for its portability, the architecture

of the kernel is separated in multiple components which make its exten-

sion simple. On one side is the monolithic architecture of the kernel, in

which process and memory management, virtual file systems, input/out-

put schedulers, device drivers and network interfaces are all lumped to-

gether in kernel space. This tight integrationwould result in a high-barrier

to entry for potential contributors: in such a monolithic system, it is hard

to know how a change to a part of the system would affect other parts.

However, this architecture also allows for dynamically loadable kernel

modules, software components which can be added and removed to the

operating system without interference with the core features. This pro-

vides a quality of extendability which further contributes to the success

of the ecosystem of the Linux ecosystem: there is a reliable core, but also

room for extension.

An architecture, such as that of the Linux kernel, thus provides signifi-

cant semantic content about the kinds of properties that developers should

be concerned about and the expected paths of evolution of the overall sys-

tem, as well as its subparts. The blueprint of the software is made clear

enough that it is simple for programmers tofinda correctway to contribute

to it. Other architectures include, for instance, the client-server architec-

ture (with the peer-to-peer architecture as an alternative), the model-view-

148

controller architecture (and its presentation-abstraction-control counter-

part)57. In all of those cases, a familiar organization of a program texts files

and delimitations of its functions lowers the barrier to entry for a program-

mer, and in this sense contributing to making the program texts writerly

texts.

Eric Raymond develops this praise of the Linux kernel in his book The

Cathedral and the Bazaar. This essay describes the Linux project, the open-

source philosophy it propelled into the limelight, and how the quantity of

self-motivated workers without rigid working structures (which is not to

say without clear designs) can result in better work than if made by a few,

select, highly-skilled individuals (Raymond, 2001). While the cathedral is

traditionally considered more aesthetically pleasing than the bazaar, in

terms of architectural canon, Raymond sides with a bazaar-like model of

organization, in which all development is done in public, with a very loose,

horizontal contribution structure at any stage of the software lifecycle—as

opposed to a tightly guided softwareprojectwhosedevelopment is doneby

a restricted number of developers. While he doesn’t mention specific aes-

thetic standards in his essay, he does highlight parallels in practices and

processes, laying foundations on which to build such standards. Architec-

ture is thus both a model for the planning of the construction of artefacts,

and a model for the organization of the persons constructing these arte-

facts.

Concepts such asmodularity, spatial organization or inter-dependence,

it turns out, could be applied to both fields. There are only few explicit ref-

erences to beauty in software architecture design; instead, desirable prop-

erties are those of performance, security, availability, functionality, usabil-

57One can even find their source in chip design, with Friedrich Kittler famously claiming

that the last people who ever truly wrote anything where the Intel engineers laying out the

plan of the 8086 chip (which would engender the whole family of x86-based devices) (Kittler,

1997). In this case, this instance is one of the few which relates software architecture to its

physical counterpart, albeit in a very technical sense of plans and diagrams.

149

ity, modifiability, portability, reusability, integrability and testability. Per-

haps this is due to the fact that the traditional understanding of beauty in

terms of external manifestation—decoration—isn’t here the main point of

software architecture, but rather a functional perception of it.

Overall, this functional conception of architecture can also be found in

the trade litterature. For instance, Robert Martin, in the influential Clean

Code mentions that the standards of software architecture are based on

the 5S japanese workplace organization method, namely:

• seiri (整理) - naming and sorting all components used

• seiton (整頓) - placing things where they belong

• seisō (清掃) - cleanliness

• seiketsu (清潔) - standardization and consistency in use

• shitsuke (躾) - self-discipline

This confirms the focus on efficiency, organization and proper use,

along with the requirement of cleanliness of the tools, workbench and

workplace, as a virtue of a good organization. While originally applied to

manufacture, Martin makes the case that this can also apply to the knowl-

edge economy—as in the case of programming, with correct naming, cor-

rect placement, correct appearance and correct use.

This does not mean that the a priori distant approachto software archi-

tecture, one which excludes any concrete writing of source code, negates

any sort of personality. Style is indeed present in software architecture. In

this context, an architectural style typically specifies a design vocabulary,

constraints on how that vocabulary is used, and semantic assumptions

about that vocabulary. For example, a pipe-and-filter style might specify a

vocabulary inwhich the processing components are data transformers (fil-

ters), and the interactions are via order-preserving streams (pipes). When it

comes down to programming such an architectural style, pipes and filters

150

do have a very real existence in the lines of source code. These concepts

are inscribed as the | character for pipes, or the .filter() method on the

JavaScript array type, which itself has different ways of being written (e.g.

with an anonymous callback function, or an externally defined function).

By virtue of there being different ways being written, one can always ar-

gue for whether or not one is better than the other, ultimately resulting in

better, clearer program texts.

More specifically, the aesthetic manifestations in the form of source

code enter in a dialogue with software architecture. If a good system ar-

chitecture should first and foremost exhbit conceptual integrity (Spinellis

& Gousios, 2009), one can extend this integrity to its source code mani-

festation. A message-passing architecture with a series of global variables

at the top of each file, or an HTTP server which also subscribes to event

channels, would look ugly to most, since they betray their original orga-

nizational concept. These concrete manifestations of a local texture of in-

coherence, to paraphrase Beardsley, might be more akin to a code smell, a

hint that something in the programmight be deeply wrong.

Amongarchitectural styles, it seems that brutalism is the one that tends

to be equated the most with styles of programming. Simon Yuill, in the

volume edited by Olga Goriunova and Alexei Shulgin, develop a paral-

lel between code art and this style of architecture. Characterized by its

foregrounding of the raw materials constituting the building, Brutalism

foregoes decoration or ornament to focus on direct utility. Yuill, building

on the HAKMEM document circulated at MIT’s computer science depart-

ment in 1972, equates this approach to a coding close to the ”baremetal” of

the computer, using the Assembly language. Contrary to higher-level lan-

guages such as C or Java, Assembly engages directly with the intricacies of

specific machines, and underlines the fundamental necessity of the hard-

ware and the need to acknowledge such a primacy. Beyond this material-

ity, he also equates other architectural values such as modularity present

in the work of architects such as Le Corbusier or Kunio Mayekawa, as well

151

as in programs such as the UNIX operating system (Yuill, 2004). What we

see here is yet another reference from software to architecture, focusing

this time on the reality of hardware, and on some theoretical principles

similar in postwar Western architecture.

Good source code, from a software architecture perspective, is code

which is clearly organized, respecting a formalized blueprint, but does not

need to exclude the reality of written lines of source code. A combination

of these properties, and acknowledgment of the medium used, can then

support an aesthetic experience. As Robin K. Hill mentions in her essay on

software elegance:

Brevity by itself can’t be enough; the C loop control while(i++ <

10)maybe terse, excelling in brevity, but its elegance is debatable.

I would call it, in the architectural sense, brutalism. Architecture

provides nice analogues because it also strives to construct arti-

facts that meet specifications under material constraints, prizing

especially those artifacts thatmanifest beauty as well. (Hill, 2016)

Both in Yuill and in Hill, we find an interesting parallel in the mention

ofmateriality. Source codemight at first seem to be immaterial, consisting

of layered representations of electrical current, there is nonetheless a cer-

tain kind of tangibility which can be pointed to. Lines being re-arranged,

symmetrical or out of alignment, blocks being cut and pasted, these op-

erations all hint at a certain material engagement with the program text,

rather than with its abstract model of software architecture. Considering

architecture as a bottom-up practice of constructing spaces, one can turn

to programmers’ discourses on craft to support this material conception.

Crafting software

Considering architecture as a strictly organizational practice does not

show the whole picture, as there is another side to architecture, concerned

with details rather than with plans, feeling rather than rationalizing.

152

In their introduction to the field of sofware architecture, Shaw andGar-

land summon theneed to formalise thepractice as thepracticemoves from

craft to engineering (Shaw & Garlan, 1996). Originally, the reality of care-

fully crafted, individualized code andunconstrained approaches towriting

code58 was looked down upon by Dijkstra, Knuth and other early software

practitioners, for its idiosyncracy and lack of rigor.

However, the conception of programming as a craft has become more

and more popular amongst source code writers and readers (Spolosky,

2003; Seibel, 2009). For instance, Paul Graham, LISP programmer, co-

founder of the Y Combinator startup accelerator and widely-read blogger,

highlights the status of programming languages as a medium and craft as

away to approach it, in his essayHackers and Painters (Graham, 2003). Par-

ticularly, he stresses the materiality of code, depicting hackers and crafts-

men as people who:

are trying to write interesting software, and for whom computers

are just a medium of expression, as concrete is for architects or

paint for painters.

So, while links between craftsmanship and programming have existed

as self-proclaimed ones by programmers themselves, as well as by aca-

demics and writers (Sennett, 2009; Chandra, 2014), they have not yet been

elucidated under specific angles. Craftsmanship as such is an ever-fleeting

phenomenon, a practice rather than a theory, in the vein of Michel De

Certeau’s tactics, bottom-up actions designed and implemented by the

users of a situation, product or technology as opposed to strategies, in

whichways of doing are prescribed in a top-down fashion (deCerteau et al.,

1990).

Explicit knowledge, in programming as in most disciplines, is carried

through books, academic programs and,more recently, web-based content

58See The Story of Mel, A Real Programmer, a folktale of early programmers where hand-

made code is both incredibly fast and incredibly hard to understand (Nather, 1983).

153

that is either structured (e.g. MOOCs, Codeacademy, Khan Academy) or

unstructured (e.g. blog posts, forums, IRC channels), but both seem to be

insufficient to reach an expert level (Davies, 1993). As demonstrated by a

popular comic, the road to good code is unclear, particularlywhen commu-

nicated in such a highly-formal language as diagramming (Munroe, 2011).

Given the fact that an individual can become a programmer through non-

formal training—as opposed to, say, an engineer or a scientist—, the learn-

ing process must include implicit knowledge.

The acquisition of such implicit knowledge in programming is re-

interpretated through fictional accounts designed to impart wisdom on

the readers, and taking inspiration from Taoism and Zen (James, 1987; Ray-

mond & Steele, 1996). From higher-level programming wisdom featuring

leading programmers such as Marvin Minsky and Donald Knuth, this sort

of informal teaching by showing has been implemented in various lan-

guages as a practical learning experience. Without the presence of an ac-

tual master, the programming apprentice nonetheless takes the program

writer as their master to achieve each of the tasks assigned to them. The

experience historically assigned to the master craftsman is delegated into

the code itself, containing both the problem, the solution to the problem

and hints to solve it, straddling the line between formal exercises and in-

teractive practice (Depaz, 2021).

If implicit knowledge can be acquired through a showing and copying

of code, software development as a craft presents an additional dimension

to this, a sort of piecemeal knowledge. Best represented by Stack Overflow,

a leading question and answer forum for programmers, on which code

snippets are made available as part of the teaching by showing method-

ology, this piecemeal knowledge can both help programmers in solving

issues as well as deter them in solving issues properly (Treude & Robillard,

2017). Code as such is freely and easily accessible as piecemeals, but often

lacks the essential context.

So while programmers are used to acquire implicit knowledge through

154

a process of learning by doing (realizing koans, coding small projects, re-

using copied code), wenowneed to assess howmuchof it happens through

observing. Implied in the apprentice-master relationship is that what is

observed should be of good quality; one learns through ones ownmistakes,

and through ones presentation with examples of good work59.

Considering programming a craft therefore raises questions of practice

and knowledge, but also of standards of quality. In terms of aesthetic ex-

perience, it also hints at the role that style, ornament and function play

in the value assessment of a well-crafted program text, just as in a well-

crafted program text. These themes will act as a recurring thread through-

out this study. Specifically, we will discuss the role of tacit knowledge in

the programming practice in 3.1.2, and the role of tools in 3.3.2; in terms

of aesthetics, the place of style between individiual and collective will be

analyzed in 5.1.3 before developing a further approach code’s material aes-

thetics as refied knowledge in 4.3.3

Ultimately, architecture, when referenced by software, includes at least

two distinct approaches: a top-down, formal design, and a bottom-up, ma-

terialist approach, reflected in how software also refers to architecture: as

abstract planning or as hands-on construction, both holding different, but

overlapping aesthetic standards. One the one side, we have cleanliness,

orderliness and appropriateness, following interpersonal conventions; on

the other side, we have a highly individual and informal practice ofmaking

which subsists along its explicit counterpart.

Architecture is indeed a field that exists at the intersection of multiple

other fields: engineering, art, design, physics and politics. As the organi-

zation of space, one can project it onto non-physical spaces, such as soft-

ware, and the way that it takes shape within the medium of source code

59Coming back to the relationship between architecture and software, Christopher

Alexander asks, in the preface of Richard P. Gabriel’s Patterns of Software: ”For a program-

mer, what is a comparable goal? What is the Chartres of programming? What task is at a high

enough level to inspire people writing programs, to reach for the stars?” (Gabriel, 1998).

155

will be more thoroughly explored in 4.3. As such, it provides another peek

into the relationship between function and form, andhow it ismediated by

the materials in which a certain structure is built, whether it is a physical

structure, or a mental structure which only exists in a written form.

When talking about the aesthetics of source code, programmers tend

to refer to three main, different domains. Each of these both reveal and

obscure certain aspects of what they value in the reading and writing of

program texts.

By referring to code as text, its linguistic nature is highlighted, along

with its problematic relationship to natural languages—problematic inso-

far as its ambiguity can play against its desire to be clear and understood,

or can play in favor of poetic undertones. The standards expressed here

touch upon the specific syntax used towrite programming, its relationship

to natural language and its potential for expressivity.

Considering the formal nature of source code, scientific metaphors

equate source code as having the potential to exhibit similar properties

as mathematical proofs and theorems, in which the elegance of the proof

isn’t a tight coupling with the theorem to be proved, but in which an el-

egant proof can (and, according to some, should) enlighten the reader to

deeper truths. Conversely, these scientific references also include engi-

neering, in which the applicability, its correctness and efficiency are of

prime importance: the conception of elegance, accompanied by economy

and efficiency, becomes a more holistic one, tending to the general feeling

of the structure at hand, rather than to its specific formalisms.

These references to engineering then lead us to the last of the do-

mains: architecture. Presented as both relevant from a top-down perspec-

tive (with formal modelling languages and descriptions, among others) or

from a bottom-up (including software patterns and familiarity and appro-

priateness within a given context). These similarities between software

in architecture, both in planning, in practice and in outlook, touch upon

156

another subject: the place of formal and informal knowledges in the con-

struction, maintenance and transmission of those (software) structures.

In this first chapter, we laid out the ground work for our discussion

of source code aesthetics. This groundwork is composed of several as-

pects. First, we have established the diversity of who writes code: far from

a homogeneous crowd which would reflect an abstraction conception of

”code”, code writers include inviduals whomight share the practices of en-

gineers, hackers, scientists or poets. While these categories do not have

rigid boundaries and easily overlap, they do allow us to establish more

clearly the contexts and purposes within which code can be read and writ-

ten: hacker code and engineer code look different from each other, achieve

different purposes than poetic code, abide by different requirements than

scientific code. Within each of these conceptions, a judgment of what

looks good will therefore be different. A conception of the aesthetics of

code seems then, at first, to possess some degree of relativity.

Second, we built on Erik Piñeiro’s work to complete a survey of the lex-

ical fields that programmers use when they describe or refer to beautiful

code. In so doing, we have highlighted certain desirable properties, such as

clarity, cleanliness, and elegance—as opposed to, say, thrilling, moving, or

delicate. This survey involved an analysis of textual instances of program-

mers’ discourses: through blog posts, forum discussions, journal articles

or textbooks, showing a steadiness in the expression of a certain aesthetic

inclination since the beginning of the trade. Additionally, the study of our

negative terms pointed further to sensual metaphors of code, using paral-

lels with smell and texture. As a a ”big ball of mud”, a ”pile of spaghetti” or

full of ”smelly corners”, ugly code is something where its appearance pre-

vents the reader or writer to grasp its true purpose—what it actually does.

While those terms are being recurrrently used to qualify aesthetically

157

pleasing code, our survey has also pointed to specific domains which pro-

grammers use as metaphors to communicate the nature of their aesthetic

appreciation: by referring to science, literature and architecture. Each

of these metaphors, sometimes simultaneously, select specific parts from

their source domain in order to adapt to inform one’s appreciation of good

source code. Literature brings linguistics, but not narrative; science brings

formalism and engineering, but not style nor individuality; architecture

brings structure and craft, but not building codes nor end-usage. These

domains are thus better understood as the different parts of a Venn dia-

gram, as practictionners attempt to define what it means to do what they

do well. This was confirmed by our investigation into the connections be-

tween craft and code, looking specifically at how craft practices inform

relations between skill, knowledge, function, space and beauty.

The overlap of these different domains has to do, it turns out, with cog-

nitive clarity. Whether wrangling with the linguistic tokens in literary ex-

ercises, as Geoff Cox puts it:

It may be hard to understand someone else’s code but the com-

puter is, after all, multi-lingual. In this sense, understanding

someone else’s code is very much like listening to poetry in a for-

eign language - the appreciation goes beyondamere understand-

ing of the syntax or form of the language used, and as such trans-

lation is infamously problematic. Form and function should not

be falsely separated. (Cox, 2011)

One function of aesthetics might thus be in structuring various pieces

of code such that their organization is robust and communicated to others

such that it allows for future maintenance and expansion. Another might

bewriting lines of code in a certainway in order to hint at some larger con-

cepts and ideas beyond their immediate execution result such as in hack-

ing or code poetry. In any case, these domains are all mentioned in their

ability to vehiculate ideas from one individual to another—as opposed to,

158

say, elicit self-reflection or sublime physical pleasure. It seems that beau-

tiful code is then both functional code and understandable code.

Before we investigate precisely how aesthetics enable the understand-

ing of computer programs, we will first explicit what makes software a

cognitively complex object. The next chapter first highlights the status of

software as an abstract artifact, before investigating the means that pro-

grammers use to understand the computational phenomena that happen

at their fingertips.

159

	Introduction
	Context
	The research territory: code
	Beautiful code
	Literature review

	The aesthetic specificities of source code
	What does source code have to say about itself?
	How does source code relate to other aesthetic fields?
	How do the aesthetics of source code relate to its functionality?

	Methodology
	Roadmap
	Implications and readership

	Aesthetic ideals in programming practices
	The practices of programmers
	Software developers
	Hackers
	Scientists
	Poets

	Ideals of beauty
	Introduction to the Methodology
	Lexical Field in Programmer Discourse

	Aesthetic domains
	Literary Beauty
	Scientific beauty
	Architectural beauty

	Understanding source code
	Formal and contextual understandings
	Between formal and informal
	Knowing-what and knowing-how

	Understanding computation
	Software ontology
	Software complexity
	The psychology of programming

	Means of understanding
	Metaphors in computation
	Tools as a cognitive extension

	Beauty and understanding
	Aesthetics and cognition
	Source code as a language of art
	Contemporary approaches to art and cognition

	Literature and understanding
	Literary metaphors
	Literature and cognitive structures
	Words in space

	Architecture and understanding
	Form and Function
	Patterns and structures
	Material knowledge

	Forms of scientific activity
	Beauty in mathematics
	Epistemic value of aesthetics
	Aesthetics as heuristics

	Machine languages
	Linguistic interfaces
	Programming languages
	Qualities of programming languages
	Styles and idioms in programming

	Spatial aesthetics in program texts
	Matters of scale
	Semantic layers
	Between humans and machines

	Contexts of functions
	Definitions of function
	Functions of source code
	Function in aesthetics

	Conclusion
	Findings
	What does source code have to say about itself?
	How does source code relate to other aesthetic fields?
	How do the aesthetics of source code relate to its functionality?

	Contribution
	Limitations

	Opening

