
The role of aesthetics in the

understandings of source code

Pierre Depaz

under the direction of

Alexandre Gefen (Paris-3)

and Nick Montfort (MIT)

ED120 - THALIM

last updated: 2023-08-02

Chapter 3

Understanding source code

Aesthetics in source code are thus primarily related to understanding. In

the previous chapter, we have highlighted a focus on understanding when

it comes to aesthetic standards: whether obfuscating or illuminating, the

process of acquiring a mental model of a given computational object is a

key determinant in the value judgment as applied to source code. In this

chapter, we focus on the reason for which software involves such a cogni-

tive load, before surveying the means—both linguistic and mechanistic—

that programmers deploy in order to relieve such a load.

This requirement for understanding, whether in a serious, playful or po-

etic manner, is related to one of the essential features of software: it must

be functional. As mentioned in our discussion of the differences between

source code and software in the introduction, source code is the latent de-

scription of what the software will ultimately do. Similarly to sheet music,

or to cooking recipes1, they require to be put into action in order for their

users (musicians and cooks, respectively) to assess their value. Therefore,

buggy or dysfunctional software is always going to be of less value than

correct software (Hill, 2016), regardless of how aesthetically pleasing the

1Recipes are a recurring example taken to communicate the concept of an algorithm to

non-experts (Zeller, 2020)

160

source is. Any value judgment regarding the aesthetics of the source code

would be subject to whether or not the software functions correctly, and

such judgment is rendered moot if that software does not work.

The assessment of whether a piece of software functions correctly can

be broken down in several sub-parts: knowing what the software effec-

tively does, what it is supposed to do, being able to tell whether these two

things are aligned, and understanding how it does it. After deciding on a

benchmark to assess the functionality of the source code at hand (under-

standing what it should be doing), one must then determine the actual be-

havior of the source code at hand once it is executed (understanding what

it is actually doing). Due to its writerly nature, one must also understand

how a program text does it, in order to modify it.

This chapter examines what goes into understanding source code:

given a certain nature of knowledge acquisition, we look at some of the

features of computers that make them hard to grasp, and the kind of tech-

niques are deployed in order to address these hurdles. This will have us

investigate the relationship of knowing and doing, the nature of computa-

tion (what is software?) and its relationship to the world as it appears to

us (how does modelling and abstraction translate a problem domain into

software?), and the cognitive scaffoldings set up in response to facilitate

that task. Ultimately, we show that, given our definition of understanding,

the complex nature of software objects and the diverse techniques pro-

grammers use to grasp these objects, aesthetics of source code also hold a

significant place in this understanding process, a position we develop in 5.

The first part will lay out our definition of understanding, presenting

it as a dual phenomenon, between formalism and contextualism. Starting

with 20tĥ century epistemology, we will see that theoretical computer sci-

ence research has favored a dominantly rational, cognitivist perspective

on the nature of understanding, eschewing another mode of understand-

ing suggested by craft practices.

Having highlighted this tension, we then turn to how understanding

161

the phenomenon of computation specifically, starting from an ontological

level. The ontological approach will show some of the features of software

give it the status of an abstract artifact (Irmak, 2012), and thus highlighting

in which ways is software a complex object to grasp. We then complement

this ontological perspective by a more practical, psychological approach.

This will show how such a comprehension takes place for situated pro-

grammers, at different skill levels, anticipating how aesthetics can fit in

this model.

Finally, we will conclude with the means that programmers deploy to

grasp the concepts at play with software: starting from metaphors used

by the general public, we will then see to what extent they differ from the

metaphors used by programmers in order to understand the systems they

build and work with. In the end, particular attention will be paid to their

extendedcognition the technical apparatusesused in thedevelopment and

inspection of source code.

3.1 Formal and contextual understandings

This section elaborates our definitionof understanding—theprocess of ac-

quiring a working knowledge of an object2. Such definition relies on two

main aspects: a formal, abstract understanding, and amore subjective, em-

pirical one. Wewill see how the former had some traction in computer sci-

ences circles, while the second gained traction in programming circles. To

support those two approaches, we first trace back the genealogy of under-

standing in theoretical computer science, before outlining how concrete

complementary approaches centered around experience and situatedness

2Or, as Catherine Elgin puts it: ”The cognitive competence involved in understanding is

generally characterized as grasping. Propositional understanding involves grasping a fact; ob-

jectual understanding consists of grasping a range of phenomena. This seems right. But it is

not clear what grasping is. I suggest that to grasp a proposition or an account is at least in part

to know how to wield it to further ones epistemic ends” (Elgin, 2017)

162

outline an alternative tradition.

3.1.1 Between formal and informal

Understanding can be differentiated between the object of understanding

and the means of understanding (Elgin, 2017). Here, we concern ourselves

with themeans of understanding, particularly as they are related to the de-

velopment of computer science. As the science of information processing,

the field is closely involved in the representation of knowledge, a represen-

tation that programmers then have to make their own.

Theoretical foundations of formal understanding

The theoretical roots of modern computation can be traced back to the

early 20tĥ century in Cambridge were being laid by both philosophers of

logic and mathematicians, such as Bertand Russell, Ludwig Wittgenstein,

and Alan Turing, as they worked on the formalization of thinking. In

their work, we will see that the formalization of knowledge operations are

rooted in an operation representation of knowledge.

Wittgenstein, in particular, bases his argumentation in his Tractatus

Logico-philosophicus on the fact that much of the problems in philosophy

are rather problems of understanding between philosophers—if one were

to express oneself clearly, and to articulate one’s through clear, unambigu-

ous language, a common conclusion could be reached without much ef-

fort3. The stakes presented are thus those of understandingwhat language

really is, and how to use it effectively to, in turn, make oneself understood.

The demonstration that Wittgenstein undertakes is that language and

logic are closely connected. Articulated in separate points and sub-points,

his work conjugates aphorisms with logical propositions depending on

one another, developing from broader statements into more specific pre-

3”Most questions and propositions of the philosophers result from the fact that we do not

understand the logic of our language” (Wittgenstein, 2010).

163

cisions, going down levels of abstraction through increasing bulleted lists.

Through the stylistic organization of his work, Wittgenstein hints at the

possibility to consider language, itself pre-requisite for understanding, as

a form of logic This complements the older approach to consider logic as

a form of language. In this sense, he stands in the lineage of Gottfried

Leibniz’s Ars Combinatoria, since Leibniz considers that one can formal-

ize a certain language (not necessarily natural languages such as German

or Latin), in order to design a perfectly explicity linguistic system. A uni-

versal, and universally-understandable language, called a characteristica

universalis could resolve anymisunderstanding issues. Quoted by Russell,

Leibniz notes that:

If we had it [a characteristica universalis], we should be able to

reason inmetaphysics andmorals inmuch the sameway as in ge-

ometry and analysis… If controversies were to arise, there would

be no more need of disputation between two philosophers than

between two accountants […] Let us calculate. (Russell, 1950)

Centuries after Leibniz’s declaration, Wittgenstein presents a coherent,

articulated theory of meaning through the use of mathematical philoso-

phy, and logic. His work also fits with that of Bertrand Russell and Alfred

Whitehead who, in his Principia Mathematica, attempt to lay out a precise

and convenient notation in order to express mathematical notations; sim-

ilarly, Gottlieb Frege’s work attempted to constitute a language in which

all scientific statements could be evaluated, by paying particular attention

to clarifying the semantic uncertainties between a specific sentence and

how it refers to a concept (Korte, 2010).

Even though these approaches differ from, and sometimes argue with4,

one another, we consider them to be part of a broad endeavour to find a
4See, ironically, Frege’s critique of Russell and Whitehead’s work, quoted in the Stanford

Encyclopedia of Philosophy: ”I do not understand the English language well enough to be able

to say definitely that Russell’s theory (Principia Mathematica I, 54ff) agrees with my theory of

functions of the first, second, etc. levels. It does seem so. But I do not understand all of it. It

164

linguistic basis to express formal propositions through which one could

establish truth-values.

Such works on formal languages as ameans of knowledge processing a

direct influence in the work on mathematician Alan Turing—who studied

at Cambridge and followed some of Wittgenstein’s lectures—, as he devel-

oped his own formal system for solving complex, abstract mathematical

problems, manifested as a symbolic machine (Turing, 1936). Meaning for-

mally expressed was to be mechanically processed.

The design of this symbol-processing machine, subsequently known

as the Turing machine, is a further step in engaging with the question of

knowledgeprocessing in themathematical sense, aswell as in the practical

sense—a formal proof to the Entscheidungsproblem solved mechanically.

Indeed, it is a response to the questions of translation (of a problem) and

of implementation (of a solution), hitherto considered a basis for under-

standing, since solving a mathematical problem supposed, at the time, to

be able to understand it.

This formal approach to instructingmachines to operate on logic state-

ments then prompted Turing to investigate the question of intelligence

and comprehension in Computing Machinery and Intelligence. In it, he

translates the hazy term of ”thinking” machines into that of ”convers-

ing” machines, conversation being a practical human activity which in-

volves listening, understanding and answering (i.e. input, process and out-

put; or attention, comprehension, diction) (Turing, 2009). This conver-

sational test, which has become a benchmark for machine intelligence,

would naively imply the need for a machine to understand what is being

said.

Throughout the article, Turing does not yet address the need for a

purely formal approach of whether or not a problem can be translated into

atomistic symbols, as we can imagine Leibniz would have had it which

is not quite clear to me what Russell intends with his designation ϕ!x�. I never know for sure

whether he is speaking of a sign or of its content.” (Linsky & Irvine, 2022)

165

would be provided as an input to a digital computer. Such a process of

translation would rely on a formal approach, similar to that laid out in the

Tractatus Logico-philosophicus, or on Frege’s formal language described in

the Begriffschrift. Following a cartesian approach, the idea in both authors

is to break down a concept, or a proposition, into sub-propositions, in or-

der to recursively establish the truth of each of these sub-propositions, and

then re-assembled to deduce the truth-value of the original proposition.

Logical calculus, as the integration of the symbol into relationships of

many symbols formally takes place through two stylistic mechanisms, the

symbol and the list. Each of the works by Frege, Russell and Wittgenstein

quoted above are structured in terms of lists and sub-lists, representing

the stylistic pendant to the epistemological approach of related, atomistic

propositions and sub-propositions. A list, far from being an innate way of

organizing information in humans, is a particular approach to language:

extracting elements from their original, situated existence, and reconnect-

ing ways in very rigorous, strictly-defined ways5.

As inventories, early textbooks, administrative documents as public

mnemotechnique, the list is a way of taking symbols, pictorial language

elements in order to re-assemble them to reconstitute the world, then

re-assemble it from blocks, following an assumption that the world can

always be decomposed into smaller, discreete and conceptually coherent

units (i.e. symbols). One can then decompose a thought in a list, and ex-

pect a counterpart to recompose this thought by perusing it. As a symbol

system, lists establish clear-cut boundaries, are simple, abstract and dis-

continuous; incidentally, this makes it very suited to a discreete symbol-

processing machine such as the computer (Depaz, 2023).

With these sophisticated syntactic systems developed a certain ap-

proach to cognition, as Turing clearly establishes a possibility for a digital

5Jack Goody develops the influence of notation on cognition: ”[List-making] […] is an ex-

ample of the kind of decontextualization that writing promotes, and one that gives the mind a

special kind of lever on ’reality’.” (Goody, 1977)

166

computer to achieve the intellectual capacities of a human brain.

But as Turing focuses on the philosophical andmoral arguments to the

possibility formachines to think, he does address the issue of formalism in

developing machine intelligence. Particularly, he acknowledges the need

for intuition in and self-development of the machine in order to reach a

level at which it can be said that the machine is intelligent. We now turn

to the formof these systems, looking at how their formaddresses the prob-

lem of clearly understanding and operating on mathematical and logical

statements.

Being based on some singular, symbolical entity, the representation of

logical calculus into lists and symbols, within a computing environment,

becomes the next step in exploring these tools for thinking, in the form

of programming languages. Considering understanding through a formal

lens can then be confronted to the real world: when programmed using

those formal languages, how much can a computer understand?

Practical attempts at implementing formal understanding

This putting into practice relies on a continued assumption of human cog-

nition as an abstract, logical. Practically, programming languages could

logically express operations to be performed by the machine.

The first of these languages is IPL, the Information Processing Lan-

guage, created by Allen Newell, Cliff Shaw and Herbert A. Simon. The idea

was to make programs understand and solve problems, through ”the sim-

ulation of cognitive processes” (Newell et al., 1964). IPL achieves this with

the symbol as its fundamental construct, which at the timewas still largely

mapped to physical addresses and cells in the computer’smemory, and not

yet decoupled from hardware.

IPL was originally designed to demonstrate the theorems of Russell’s

Principia Mathematica, along with a couple of early AI programs, such as

the Logic Theorist, the General Problem Solver. As such, it proves to be a

167

link between the ideas exposed in the writing of the mathematical logi-

cians and the actual design and construction of electrical machines acti-

vating these ideas. More a proof of concept than a versatile language, IPL

was then quickly replaced by LISP as the linguistic means to express intel-

ligence in digital computers (see 2.1.3).

This structure of Lisp is quite similar to the approach suggested by

Noam Chomsky in his Syntactic Structures, where he posits the tree struc-

ture of language, as a decomposition of sentences until the smallest con-

ceptually coherent parts (e.g. Phrase -> Noun-Phrase + Verb-Phrase -> Arti-

cle + Substantive + Verb-Phrase). The style is similar, insofar as it proposes

a general ruleset (or the at least the existence of one) in order to construct

complex structures through simple parts.

Through its direct manipulation of conceptual units upon which logic

operations can be executed, LISP became the language of AI, an intelli-

gence conceived first and foremost as logical understanding. The use of

LISP as a research tool culminated in the SHRDLU program, a natural lan-

guage understanding program built in 1968-1970 by TerryWinograd which

aimed at tackling the issue of situatedness—AI can understand things ab-

tractly through logical mathematics, but can it apply these rules within

a given context? The program had the particularity of functioning with

a ”blocks world” a highly simplified version of a physical environment—

bringing the primary qualities of abstraction into solid grasp. The com-

puter system was expected to take into account the rest of the world and

interact in natural language with a human, about this world (Where is the

red cube? Pick up the blue ball, etc.). While incredibly impressive at the

time, SHDRLU’s success was nonetheless relative. It could only succeed

at giving barely acceptable results within highly symbolic environments,

devoid of any noise. In 2004, Terry Winograd writes:

There are fundamental gulfs between the way that SHRDLU and

its kin operate, and whatever it is that goes on in our brains.

168

I don’t think that current research has made much progress in

crossing that gulf, and the relevant science may take decades or

more to get to the point where the initial ambitions become real-

istic. (Nilsson, 2009)

This attempt, since the beginning of the century, to enable thinking,

clarify understanding and implement it in machines, had first hit an ob-

stacle. The world, also known as the problem domain, exhibits a certain

complexity which did not seem to be easily translated into singular, atom-

istic symbols.

A critique of formalism as the only way to model understanding was

already developed in 1976 by Joseph Weizenbaum. Particularly, he argues

that the machine cannot make a judgment, as judgments cannot be re-

duced to calculation (Weizenbaum, 1976). While the illusion of cognition

might be easy to achieve, something he did in his development of early

conversational agents, of which the most famous is ELIZA, the necessary

inclusion of morals and emotion of the process of judging intrinsically

limit what machines can do6. Formal representation might provide a cer-

tain appearance of understanding, but lacks its depth.

Around the same time, however, was developed another approach to

formalizing the intricacies of cognition. WarrenMcCullough’s seminal pa-

per, A logical calculus of the ideas immanent in nervous activity, co-written

withWalter Pitts, offers an alternative to abstract knowledge based on the

embodiment of cognition. They present a connection between the system-

atic, input-output procedures dear to cybernetics with the predicate logic

writing style of Russell and others (McCulloch & Pitts, 1990). This attach-

ment to input and output, to their existence in complex, inter-relatedways,

rather than self-contained propositions is, interestingly, rooted in his ac-

6Joseph Leighton considers judgment has a foundational aspect of understanding, which

is the construction of operational knowledge: ”knowledge begins in simple judgments, judg-

ments of feeling or sentience, as yet devoid of explicit conceptual relations, but containing the

germs of all higher order functions of thinking.” (Leighton, 1907).

169

tivy as a literary critic7.

Going further in the processes of the brain, McCullough indeed finds

out, in another paper with Letvinn and Pitts (Lettvin et al., 1959), that the

organs through which the world excites the brain are themselves agents

of process, activating a series of probabilistic techniques, such as noise

reduction and softmax, to provide a signal to the brain which isn’t the un-

touched, unary, symbolical version of the signal input by the external stim-

uli, and nor does it seem to turn it into such.

We see here the development of a theory for a situated, embodied

and sensual stance towards cognition, which would ultimately resurface

through the rise of machine learning via convoluted neural networks in

the 2000s (Nilsson, 2009). In it, the senses are as essential as the brain for

an understanding—that is, for the acquisition, through translation, of a

conceptual model which then enable deliberate and successful action. It

seems, then, that there are other ways to know things than to rely on de-

scription through formal propositions.

A couple of decades later, Abelson and Sussman still note, in their in-

troductory textbook to computer science, the difficulty to conveymeaning

mechanically:

Understanding internal definitions well enough to be sure a pro-

grammeans what we intend it to mean requires amore elaborate

model of the evaluation process than we have presented in this

chapter. (Abelson et al., 1979)

So, while formal notation is able to enable digital computation, it

proved to be limited when it came to accurately and expressively convey-

ing meaning. This limitation, of being able to express formally what we

7Even at the Chicago Literary book club, he argues for a more sensuous approach to cog-

nition: ”In the world of physics, if we are to have any knowledge of that world, there must be

nervous impulses in our heads which happen only if the worlds excites our eyes, ears, nose or

skin.” (McCulloch, 1953)

170

understand intuitively (e.g. what is a chair?8) appeared as computers ap-

plications left thedomainof logic andarithmetic, andwere applied tomore

more complex problem domains.

After having seen the possibilities and limitations of making machines

understand through the use of formal languages, and the shift offered by

taking into account sensory perception as a possible locus of cognitive pro-

cesses andmeans of understanding, we now turn to theseways of knowing

that exist in humans in a more embodied capacity.

3.1.2 Knowing-what and knowing-how

With the publication of Wittgenstein’s Philosophical Investigations, there

was a radical posture change from one of the logicians whose work under-

pinnedAI research. Inhis secondwork, hedisownhis previous approach to

language as seen in the Tractatus Logico-philosophicus, and favors a more

contextual, use-centered frame of what language is. Rather than what

knowledge is, he looks at how knowledge is acquired and used; while (for-

mal) lanuage was previously defined as the exclusive means to translation

concepts in clearly understandable terms, he broadens his perspective in

the Inquiries by stating that language is ”the totality of language and the

activities with which it is intertwined” and that ”the meaning of a word is its

use within language” (Wittgenstein, 2004), noting context and situatedness

as a important factors in the understanding process.

At first, then, it seemed possible tomakemachines understand through

the use of formal languages. The end of the first wave of AI development, a

branch of computation specifically focused on cognition, has shown some

limits to this approach. Departing from formal languages, we now inves-

tigate how an embodied and situated agent can develop a certain sense of

understanding.

8A question addressed by Joseph Kosuth in his conceptual artworkOne and Three Chairs,

1965

171

Knoweldge and situation

As hinted at by the studies ofMcCullough and Levitt, the process of under-

standing does not rely exclusively on abstract logical processes, but also

on the processes involved in grasping a given object, such as, in their case,

what is being seen. It is not just what things are, but how they are, and

how they are perceived, whichmatters. Different means of inscription and

description do tend to have an impact on the ideas communicated and un-

derstood.

In his bookMaking Sense: Cognition, Computing, Art and Embodiment,

Simon Penny refutes the so-called unversality of formulating cognition as

a formal problem, and develops an alternative history of cognition, akin to

Michel Foucault’s archeology of knowledge. Drawing on the works of au-

thors such asWilliam James, Jakob vonUexküll andGilbert Ryle, he refutes

the Cartesian dualism thesis which acts as the foundation of AI research

(Penny, 2019). A particular example of the fallacy of dualism, is the use of

the phrase implementation details, which he recurringly finds in the AI lit-

erature, such asHerbert Simon’sThe Sciences of the Artificial (Simon, 1996).

In programming, to implement analgorithmmeans tomanifest in concrete

instructions, such that they are understood by the machine. The phrase

thus refers to the gap existing between the statement of an idea, of an al-

gorithm, and a procedure, and its concrete, effective and functional mani-

festation. This concept of implementation will show how context tends to

complicate abstract understanding.

For instance, pseudo-code is a way to sketch out an algorithmic proce-

dure, which might be considered agnostic when it comes to implementa-

tion details. At this point, the pseudo-code is halfway between a general

idea and the specificity of the particular idiom inwhich it is inscribed. One

can consider the pseudo-code in 38, which describes a procedure to recog-

nize a free-hand drawing and transform it into a known, formalized glyph.

Disregarding the implementation details means disregarding any reality

172

recognition = false
do until recognition
wait until mousedown

if no bounding box, initialize bounding box
do until mouseup
update image
update bounding box
rescale the material that's been added inside
if we recognize the material:

delete image from canvas
add the appropriate iconic representation
recognition = true

Listing 38: Example of pseudo-code attempting to reverse-engineer a soft-

ware system, ignoring any of the actual implementation details, taken

from (Nielsen, 2017)

of an actual system: the operating system (e.g. UNIX orMSDOS), the input

mechanism (e.g. mouse, joystick, touch or stylus), the rendering proce-

dure (e.g. raster or vector), the programming language (e.g. JavaScript or

Python), or any details about the human user drawing the circle.

Refuting the idea that pseudo-code, as abstracted representation, is all

that is necessary to communicate and act upon a concept, Penny argues on

the contrary that information is relativistic and relational; relative to other

pieces of information (intra-relation) and related to contents and forms of

presenting this relation (extra-relation). Pseudo-code will only ever make

full sense in a particular implementation context, which then affects the

product.

He then follows Philip Agre’s statement that a theory of cognition based

on formal reason works only with objects of cognition whose attributes

and relationships can be completely characterized in formal terms; and

yet a formalist approach to cognition does not prove that suchobjects exist

or, if they exist, that they can be useful. Uses of formal systems in artificial

intelligence in specific, and in cognitive matters in general, is yet another

instance of the map and the territory problem—programming languages

only go so far in describing a problem domain without reducing such do-

173

main in a certain way.

Beyond the syntax of formal logic, there are different ways to transmit

cognition in actionable form, depending on the form, the audience and

the purpose. In particular, a symbol system does not need to be formal

in order to act as a cognitive device. Logical notation exists along with

music, painting, poetry and prose. In terms of form, a symbol system of

formal logic is only one of many possibilities for systems of forms. In his

Languages of Art, Nelson Goodman elaborates a theory of symbol systems,

which he defines as formal languages composed of syntactic and seman-

tic rules (Goodman, 1976), further explored in 4.1. What follows, argues

Goodman, is that all these formal languages involve an act of reference.

Through different means (exemplification, denotation, resemblance, rep-

resentation), liguistic systems act as sets of symbols which can denote or

exemplify or refer to in more complex and indirect ways, yet always be-

tween a sender and a receiver.

Despite the work of Shannon (Shannon, 2001) and its influence on

the development of computer systems, communication, as the transfer of

meaning fromone individual to one ormore other individuals, does not ex-

clusively rely on the use ofmathematical notation use of formal languages.

FromGoodman to Goody, the format of representation also affords dif-

ferences inwhat can be thought and imagined. Something thatwas always

implicit in the arts—that representation is a complex and ever-fleeting

topic—is shownmore recently inMarchand-Zañartu and Lauxerois’s work

on pictural representations made by philosophers, visual artists and nov-

elists (such as Claude Simon’s sketches for the structure of his novel La

Route des Flandres, shown in 3.1) (Marchand-Zañartu & Lauxerois, 2022).

How specific domains, including visual arts and construction, engage in

the relation between form and cognition is further adressed in chapter 4.

Going beyond formal understanding through logical notation, we have

seen that there are other conceptions of knowledge which take into ac-

count the physical, social and linguistic context of the agent understand-

174

Figure 3.1: Tentative d’organisation visuelle pour le roman La Route des

Flandres, années 1960 - Claude Simon, écrivain

ing, as well as of the object being understood. Keeping in mind the recur-

ring concept of craft discussed in 2.3.3, complete this overview of under-

standing by paying attention to the role of practice.

Constructing knowledge

There are multiple ways to express an idea: on can use formal notation or

draft a rough sketch with different colors. These all highlight different de-

grees of expression, but one particular way can be considered problematic

in its ambition. Formal languages rely on the assumption, that all which

can be known can ultimately be expressed in unambiguous terms. First

shown by Wittgenstein in the two main eras various eras of his work, we

know focus on the ways of knowing which cannot be explicited.

First of all, there is a separation between knowing-how and knowing-

that; the latter, propositional knowledge, does not cover the former, practi-

cal knowledge (Ryle, 1951). Perhaps one of themost obvious example of this

duality is in the failure of Leibniz to construct a calculating machine, as

told byMatthew L. Jones in his book Reckoning withMatter. In it, he traces

175

the history of philosophers to solve the problem of constructing a calcu-

lating machine, a problem which would ultimately be solved by Charles

Babbage, with the consequences that we know (Jones, 2016).

Jones depicts Leibniz in his written correspondence with watchmaker

Ollivier, in their fruitless attempt to construct Leibniz’s design; the im-

plementations details seem to elude the German philosopher as he refers

to the ”confused” knowledge of the nonetheless highly-skilled Parisian

watchmaker. The (theoretical) plans of Leibniz donotmatch the (concrete)

plans of Ollivier.

These are two complementary approaches to the knowledge of some-

thing: to knowwhat constructing a calculatingmachine entails and know-

inghow to construct suchamachne. In the fact thatOllivier couldnot com-

municate clearly to Leibnizwhat his technical difficulties, we can see an in-

stance of something which would be theorized centuries later by Michael

Polanyi as tacit knowledge, knowledge which cannot be entirely made ex-

plicit.

Polanyi, as a scientist himself, starts from another assumption: we

know more than we can tell. In his eponymous work, he argues against

a positivist approach to knowledge, in which empirical and factual deduc-

tions are sufficient to achieve satisfying epistemological work. What he

proposes, derived from gestalt psychology, is to consider some knowledge

of an object as the knowledge of an integrated set of particulars, of which

we already know some features, by virtue of the object existing in an ex-

ternal approach. This integrated set, in turn, displaysmore properties than

the sum of its parts. While formal notation suggests that the combination

of formal symbols does not result in additional knowledge, Polanyi rather

argues, against Descartes, that relations and perceptions do result in addi-

tional knowledge.

The knowledge of a problem is, therefore, like the knowing of un-

specifiables, a knowing of more than you can tell. (Polanyi &

176

Grene, 1969)

Rooted in psychology, and therefore in the assumption of the embod-

imed of the human mind, Polanyi posits that all thought is incarnate, that

it lives by the body and by the favour of society, hence giving it a physio-

social dimension. This confrontation with the real-world, rather than be-

ing a strict hurdle that has to be avoided or overcome, as in the case of

SHRDLU above, becomes one of the two poles of cognitive action. Knowl-

edge finds its roots and evaluation in concrete situations, as much as in

abstract thinking. In the words of Cecil Wright Mills, writing about his

practice as a social scientist research,

Thinking is a continuous struggle between conceptual order and

empirical comprehensiveness. (Mills, 2000)

Polanyi’s presentation of a form of knowledge following the move-

ment of a pendulum, betweendismemberment and integrationof concepts

finds an echo in the sociological work of Mills: a knowledge of some ob-

jects in the world happens not exclusively through formal descriptions in

logical symbol systems, but involves imagination and phenomenological

experience—wondering and seeing. This reliance on vision—starting by

recognizing shapes, as Polanyi states—directly implies the notion of aes-

thetic assessment, such as a judgement of typical or non-typical shapes.

He does not, however, immediately elucidate how aesthetics support the

formation of mental models at the basis of understanding, only that this

morphology is at the basis of higher order of represenations.

Seeing, though, is not passive seeing, simply noticing. It is an active

engagementwithwhat is being seen. Mills’s quote above also contains this

other aspect of Polanyi’s investigation of knowledge, and already present

in Ollivier’s relation with Leibniz: knowing through doing.

This approach has been touched upon from a practical programmer’s

perspective in section 2.3.3, through a historical lens but it does also posses

177

theoretical grounding. Specifically, Harry Collins offers a deconstruction

of the Polanyi’s notion by breaking it down into relational, somatic and col-

lective tacit knowledges (Collins, 2010). While he lays out a strong approach

to tacitness of knowledge (i.e. it cannot be communicated at all), his dis-

tinction between relational and somatic is useful here9. It is possible to

think about knowledge as a social construct, acquired through social re-

lations: learning the linguo of a particular technical domain, exchanging

with peers at conferences, imitating an expert or explaining to a novice.

Collective, unspoken agreements and implicit statements of folk wisdom,

or implicit demonstrations of expert action are all means of communica-

tion through which knowledge gets replicated across subjects.

Concurrently, somatic tacit knowledge tackles the physiological per-

spective as already pointed out by Polanyi. Rather than knowledge that

exists in one’s interactions with others, somatic tacit knowledge exists

within one’s physical perceptions and actions. For instance, one might

base one’s typing of one’s password strictly on one’smusclememory, with-

out thinking about the actual letters being typed, through repetition of

the task. Or one might be spotting a cache bug which simply requires a

machine reboot, due to experience machine lifecycles, package updates,

networking behaviour. Not completely distinct from its relational pen-

dant, somatic knowledge is acquired through experience, repetition and

mimeomorphism—replicating actions and behaviours, or the instructions,

often under the guidance of someone more experienced.

We started our discussion of understanding by defining it as the acqui-

sition of the knowledge of a object—be it a concept, a situation, an indi-

vidual or an artfefact, which is accurate enough that it allows us to predict

the behaviour of and to interact with such object.

Theories of how individuals acquire understanding (how they come to

9His definition of collective tacit knowledge touches on the knowledge present in any

living species and is impossible to ever be explicited, and is therefore out of scope here.

178

know things, and develop operational and conceptual representations of

things), have been approached from a formal perspective, and a contexutal

one. The rationalist, logical philosophical tradition from which computer

science originally stems, starts from the assumption that meaning can be

rendered unambiguous through the use of specific notation. Explicit un-

derstanding, as the theoretical lineage of computation, then became real-

ized in concrete situations via programming languages.

However, the explicit specification ofmeaning fell short of handling ev-

eryday tasks which humans would consider to be menial. This has led us

to consider a different approach to understanding, in which it is acquired

through contextual and embodied means. Particularly, we have identified

this tacit knowledge as relying on a social component, as well as on a so-

matic component.

Source code, as a formal system with a high dependence of context, in-

tent and implementation, mobilizes both approaches to understanding.

Due to programing’s ad hoc and bottom-up nature, attemps to formalize

it have relied on the assumption that expert programmers have a certain

kind of tacit knowledge (Soloway et al., 1982; Soloway & Ehrlich, 1984). The

way inwhich this knowledge, which they arenot able to verbalize, has been

acquired and is being deployed, has long been anobject of study in thefield

of software psychology.

Before our overview of what the psychology of programmers can con-

tribute on the cognitive processes at play in understanding source code,

we must first explicit in which ways software as a whole is a cognitively

complex object.

179

3.2 Understanding computation

Software, computation and source code are all related components; re-

spectively object, theory and medium. The ability to dematerialize soft-

ware (from firmware, to packaged CDs, to cloud services) and the status

of source code as intellectual property point to an ambiguous nature: it

is both there and not there, idea and matter. This section makes explicit

some of the affordances of software which make it a challenging object to

grasp, in order to lay out what programmers are dealing with when they

read and write source code.

In order to reconcile the different tensions highlighted in the various

kinds of complexities that software exhbits, we first turn to an ontologi-

cal stance. Particularly, we will develop on Norbay Irmak’s proposal that

software exists as an abstract artifact, simultaneously on the ideal, practi-

cal and physical planes, and see how Simondon’s technical and aesthetic

mode of existence can reconcile fragmented practice with unified totality.

We then shift to the practical specifities of software, particularly in

terms of levels and types of complexity. This will highlight some of the

properties that make it hard to understand, such as its relation to hard-

ware, its relation to a specification, and its existence in time and space.

With this in mind, we will conclude this section by looking specifically

at the source code representation of software, and at how programmers

deploy strategies to understand it. Approaching it from a cognitive and

psychological perspective, wewill seehowundersanding software involves

the construction of programming plans and mental models; the tools and

helps used in order to construct themwill be explicited in the next section.

3.2.1 Software ontology

Beforewe clarifywhat software complexity consists of, wefirst frame these

difficulties in a philosophical context, more specifically the philosophy of

180

technology. We will investigate how these complexities can be seen as

stemming from the nature of technology itself, and how this connects to

an aesthetic stance. Before moving back to practical inquiries into how

specific individuals engage with this nature, this section will help pro-

vide a theoretical background, framing technology as a relational practice,

complementing other modes of making sense of and taking action on the

world. This conceptual framework will start with an investigation into the

denomination of software as an abstract artifact, followedby an analysis of

technology as a specificmode of being, and concluding on how it is related

to an aesthetic mode of being.

Software as abstract artifact

When he coins the phrase abstract artifact, Nurbay Irmak addresses soft-

ware partly as an abstract object, similar in his sense to Platonic entities,

and partly as a concrete object which holds spatio-temporal properties (Ir-

mak, 2012). This is based on the fact that software requires an existence

as a textual implementation, in the form of source code (Suber, 1988); it is

composed of files, has a beginning (start) and an end (exit); but software

also represents ideas of structure and procedure which go beyond these

limitations of being written to a disk, having a compilation target or an

execution time. Typically, the physical aspects of software (its manifes-

tation as source code) can be changed without changing any of the ideas

expressed by the software10.

Irmak complements Colburn’s consideration of software as a concrete

abstraction, an oxymoron which echoes the tensions denoted by the con-

cept of the abstract artifact. He grounds these tensions in the distinction

between a medium of execution (a—potentially virtual—machine) and a

medium of description (source code). He considers that, while any high-

10In programming, this is called refactoring. This phenomenon can also be observed in

natural languages, in which one can radically change a syntax without drastically changing

the semantics of a sentence.

181

level programming language is already the result of layers of abstraction,

such language gets reduced to the zeroes and ones input to the central pro-

cessing unit (Colburn, 2000). Here, he sees the abstraction provided by lan-

guages ultimately bound to the concrete state of being of hardware and bi-

nary. And yet, if we follow along along his reasoning, these representations

of voltage changes into zeroes and ones are themselves abstractions over

yet another concrete, physical event. Concrete and abstract are recursively

tangled properties of software.

Writing on computational artefacts, of which software is a subset, Ray-

mond Turner formalizes this specificity of in a three-way relationship.

Namely, abstract artefact A is an implementation in mediumM of the def-

inition F. For instance, concerning the medium:

Instead of properties such as made from carbon fiber, we have

properties such as constructed from arrays in the Pascal pro-

gramming language, implemented in Java. (Turner, 2018)

This metaphor provides an accurate but limited account of the place

of source code within the definition of software: the Java implementa-

tion is itself a definition implemented in a specific bytecode, while ar-

rays in Pascal are different abstractions than arrays implemented in C, etc.

Nonetheless, source code is that which gives shape to the ideas immanent

in software—through a process of concretization—and which hides away

the details of the hardware—through abstraction. This metaphor of ab-

stract artifact thus helps to clarify the tensions within software, and to lo-

cate the specific role of source code within the different moving parts of

definition, medium and model.

Software, like other artefacts, has a relation between its functional

properties (i.e. purpose that are intended to be achieved through their use)

and structural ones (both conceptual and physical configurationwhich are

involved in the fullfilment of the functional purpose) (Turner, 2018). As

such, it also belongs to the broader class of technology, and thus holds

182

some of the specifities of this lineage, into which we extend our inquiry.

Software as a relational object

The technological object underwent a first qualitative shift during the Eu-

ropean Industrial Revolution, and a second one with the advent of com-

puting technologies. The status of its exact nature is therefore a somewhat

recent object of inquiry. Here, we will start from Gilbert Simondon’s un-

derstanding of technology as amode, in order to ultimately contrast it with

the aesthetic mode.

According to Simondon, the technical object is a relation betweenmul-

tiple structures and the result of a complex operation of various knowl-

edges (Simondon, 1958), some scientific, some practical, some social, some

material. The technical object is indeed a scientific object, but also a social

object and an artistic object at the same time. Differentiated in its various

stages (object, individual, system), it is therefore considered as relational,

insofar as its nature changes through its dependance, and its influence, on

its environment.

Technology is a dynamic of organized, but inorganic matter (Stiegler,

1998). Following Latour, we also extend the conception of inorganized

matter to include social influences, personal practices, and forms of tacit

and explicit knowledges (Latour, 2007). That is, the ambiguity of the tech-

nical object is that it extends beyond itself as an object, entering into a

relation with its surrounding environment, including the human individ-

ual(s) which shape and make use of it.

Technology is generally bound to practical matter, even though such

matter could, under certain circumstances, take on a symbolic role ofman-

ifesting the abstract. This is the case of the compass, the printing press,

or the clock. The clock, a technology which produces seconds, its action

reached into another domain—that of mechanical operation on abstract

ideas (Mumford, 1934). The domain of abstract ideas was hitherto reserved

183

to different modes than technology: that of religion and philosophy, and

technology holds a particularly interesting relation with these two. Ac-

cording to Simondon, philosophy followed religion as a means of relating

to, andmaking sense of, the abstract such the divine and the ethical. Trac-

ing back the genesis of the technological object, he writes that the tech-

nical mode of existence is therefore just another mode through which the

human can relate to the world, similar to the religious, the philosophical,

and the aesthetic mode(Simondon, 1958).

Technical objects imply another mode of being, consequential to the

recognition of the limtations of magic—humanity’s primary mode of be-

ing. Technicity, according to Simondon, focuses on the particular, on the

elements, a contrario to the religious mode of being, which finds more sta-

bility in a persepective of totality, rather than a focus on individuals11.

This technicalmode of existence, based on particulars, can nonetheless

circle back to a certain totality through themeans of induction; that is, de-

riving generals from the observed particulars. As such, technical thinking,

as inverted religious thinking, stems from practice, but also provide a the-

ory Technology, religion and philosophy are all, according to Simondon,

combinations of a theory of knowledge and a theory of action, compensat-

ing for the loss of magic’s totalizing virtues. While the religious, followed

by the philosophical, approach from theory to deduce a practice, and thus

lack grounding, technology reverses the process and induces theory from

operatoins on individual elements.

Simondon complements the technical with the aesthetic mode, and as

such counter-balances the apparent split between technics and religion by

11”La pensée technique a par nature la vocation de représenter le point de vue de l’élément

; elle adhère à la fonction élémentaire. La technicité, en s’introduisant dans un domaine, le

fragmente et fait apparaître un enchaînement de médiations successives et élémentaires gou-

vernées par l’unité du domaine et subordonnées à elle. La pensée technique conçoit un fonc-

tionnement d’ensemble comme un enchaînement de processus élémentaires, agissant point par

point et étape par étape ; elle localise et multiplie les schèmes de médiation,restant toujours

au-dessous de l’unité.” (Simondon, 1958).

184

striving for unity and totality, for the balance between the objective and

the subjective. Yet, rather than being amonadic unity of a single principle,

Simondon considers the aesthetic mode as a unifying network of relation-

ships 12. He further argues that the aesthetic mode goes beyond taste and

subjective preference, into a fundamental aspect of the way in which hu-

man beings relate to the world around them. An aesthetic object therefore

acquires the property of being beautiful by virtue of its relationships, of

its connections between the subject and the objective, between one’s his-

tory and one’s perceptions, and the various elements of the world, and the

actions of the individual. Finally, the aesthetic thought when related to

the technical object consists in preparing the communication between dif-

ferent communities of users, between different perspectives on the world,

and different modes of action upon this world. Ultimately, the aesthetic

mode of can therefore be seen as the revealing of a nexus of relationships

found in its environment, highlighting the key-points of in the structure of

the object 13. How aesthetics enables a holistic thought through the use of

sensual markers will be the subject of 4.

Computation, as a particular kind of computation, is thus both a theory

and a practice, and can also be subject to an aesthetic impression. Partic-

ularly, one can think of computers as a form of technology through which

meaning is mechanically realized14.

12”L’impression esthétique n’est pas relative à une œuvre artificielle ; elle signale, dans

l’exercice d’un mode de pensée postérieur au dédoublement, une perfection de l’achèvement qui

rend l’ensemble d’actes de pensée capable de dépasser les limites de son domaine pour évoquer

l’achèvementde lapensée end’autres domaines ; uneœuvre techniqueassez parfaite pour équiv-

aloir à un acte religieux, une œuvre religieuse assez parfaite pour avoir la force organisatrice et

opérante d’une activité technique donnent le sentiment de la perfection.” (Simondon, 1958)
13”Là apparaît l’impression esthétique, dans cet accord et ce dépassement de la technique

qui devient à nouveau concrète, insérée, rattachée aumonde par les points-clefs les plus remar-

quables” (Simondon, 1958).
14”Sans constraints of meaning or meaningfulness (i.e., some flavour of intentionality), com-

puters would amount to nothing more than ”machines”—or even, as I will ultimately argue, to

”stuff”: mere lumps of clay. Unless it recognizes meaningfulness as essential, even the most

185

Software is a manifestation of technology as both knowledge and ac-

tion. Furthermore, it also enables ways to act mechanically on knowl-

edge and ideas, an affordance named epistemic action by David Kirsh and

Paul Maglio (Kirsh & Maglio, 1994). They define epistemic actions as ac-

tions which facilitate thinking through a particular situation or environ-

ment, rather thanhaving an immediate functional effect on the state of the

world. As technology changes the individual’s relationship to the world,

software does so by being the dynamic, manipulable notion of a state of a

process, ever evolving around a fixed structure, and by changing the con-

ceptual understanding of said world (Rapaport, 2005). Such examples of

world related to the environment in which software exists, e.g. the social

environment, or hardware environment, or the environment which has

been recreated within software. David M. Berry investigates this encap-

sulation of world in his Philosophy of Software:

The computational device is, in some senses, a container of a

universe (as a digital space) which is itself a container for the

basic primordial structures which allow further complexification

and abstraction towards a notion of world presented to the user.

(Berry, 2011)

Software-as-world is thematerial implementation of a proposedmodel,

itself derived from a theory. It therefore primarily acts at the level of epis-

teme, sometimes even limiting itself to it15. Paradoxically, it is only through

highly perfected theory of computation would devolve into neither more not less than a gener-

alized theory of the physical world. Sans some notion of efficacy of mechanism m, conversely,

no limits could be either discerned or imposed on what could be computed, evacuating the no-

tion of constraint, and hence of intellectual substance. Freed from all strictures of efficacy or

mechanism from any requirement to sustain physical realizability, computation would become

fantastic (or perhaps theistic): meaning spinning frictionlessly in the void.” (Smith, 2016).
15Functional programming languages take pride in the fact that they have no effect on the

world around them, being composed exclusively of so-called pure functions, and no external

side-effects, or input/output considerations.

186

peripherals that software can act as amechanical technology in the indus-

trial sense of the word.

Along with software’s material and theoretical natures (i.e. in contem-

porary digital computers, it consists of electrons, copper and silicium and

of logical notations), another environment remains—that of the intent of

the humans programming such software. Indeed, thinking through the

function of computational artefacts, Turner states that it is agency which

determines what the function is. He defines agency as the resolution of

the difference between the specification (intent-free, external to the pro-

gram) and semantic interpretation (intent-rich, internal to the program-

mer) (Turner, 2018). In order to understand a computer program, to under-

stand how it exists in multiple worlds, and how it represents the world, we

need to give it meaning. To make sense of it, a certain amount of inter-

pretation is required in relation to that of the computer’s—such that the

question ”what does a Turing machine do?” has n+1 answers. 1 syntactic,

and n semantic (e.g. however many interpretations as there can be human

interpreters) (Rapaport, 2005). In his investigation into what software is,

Suber corroborates:

This suggests that, to understand software, we must understand

intentions, purposes, goals, or will, which enlarges the problem

farmore thanwe originally anticipated. […]We should not be sur-

prised if human compositions that are meant to make machines

do useful work should require us to posit and understand human

purposiveness. After all, to distinguish literature from noise re-

quires a similar undertaking. (Suber, 1988)

In conclusion, we have seen that while software can be given the par-

ticular status of an abstract artifact, these tensions are shared across tech-

nological objects, as they connect theory and practice. Technology, as a

combination of a theory of knowledge and a theory of action, as an inter-

187

face to the world and a recreation of the world, is furthermore related to

other modes of existence—and in particular the aesthetic mode. We have

seen how Simondon suggests that the aesthetic mode has totalizing prop-

erties: through the sensual perception of perfected execution, it compen-

sates technology’s fragmented mode of existence.

What do these tensions and paradoxes look like in practice? In the next

section, we examinemore carefully the specific properties of software, and

the complexities that this specific object entails. Specifically, we will see

how software’s various levels of existence, types of complexities, and kinds

of actions and interpretations that it allows, all contribute to the cognitive

hurdles encountered when attempting to understanding software.

3.2.2 Software complexity

What is there to know about software? Looking at the skills that novel

programmers have to develop as they learn their trade, one can include

problem solving, domain modelling, knowledge representation, efficiency

in problem solving, abstraction, modularity, novelty or creativity (Fuller

et al., 2007). The variety of these skills and their connection to intellec-

tual work—for instance, there is no requirement for manual dexterity or

emotional intelligence—suggests that making and reading software is a

complex endeavor.

Indeed, software exhibits several particularities, as it possesses several

independent components which interact with each other in non-trivial,

and non-obvious ways. In order to clarify those interactions, we start by

looking at the different levels at which software exists, before turning to

the different kinds of complexity whichmake software hard to grasp, con-

cluding on its particular existence in time and space.

Along with different levels of existence needed to be taken into ac-

count by the programmer, software also exhibits specific kinds of com-

plexity. Our definition of complexity will be the one proposed by Warren

188

Weaver. He defines problems of (organized) complexity as those which

involve dealing simultaneously with a sizable number of factors which

are interrelated into an organic whole (Weaver, 1948)16. Specifically, there

are three different types of software complexity that we look at: technical

complexity, spatio-temporal complexity and modelling complexity.

Levels of software

Software covers a continuum from an idea to a bundled series of distinct

binary marks. One of the essential steps in this continuum is that of im-

plementation. Implementation is the realization of a plan, the concrete

manifestation of an idea, and therefore hints at a first tension in software’s

multiple facets. It can happen through individuation, instantation, exem-

plification and reduction (Rapaport, 2005). On the one side, there is what

we will call here ideal software, often existing only as a sharedmental rep-

resentation by humans (not limited to programmers), or as printed doc-

umentation, as a series of specifications, etc. On the other side, we have

actual software, which is manifested into lines of code, written in one or

more particular languages, and running with more or less bugs.

The relationship between the ideal and the actual versions of the same

software is not straightforward. Ideal software only provides an intent, a

guidance towards a goal, assuming, but not guaranteeing, that this goal

will be reached17

Actual software, as most programmers know, differs greatly from its

ideal version, largely due to the process of implementation, translating the

purpose of the software from natural and diagrammatic languages, into

programming languages, fromwhat it should do, intowhat it actually does.

16As opposed to disorganized complexity, which are dealt with statistical tools.
17A popular engineering saying is that complements this approach by stating that: ”In the-

ory, there is no difference between theory and practice. In practice, there is.”. This quote is of-

tenmis-attributed to Richard P. Feynman or Albert Einstein, but has been traced to Benjamin

Brewster, writing in the Yale Literary Magazine of 1882. (Investigator, 2018)

189

how to get the difference in character length between two words

store the first word in a variable
store the second word in a variable

store the difference between the number of characters in the first
word↪→

and the number of characters in the second word

print the difference to the console

Listing 39: Example of a program text represented in pseudo code. See 40,

41 and 42 for lower level representations.

Writing on the myths of computer science, JamesMoor (Moor, 1978) al-

lows us to think through this distinction between ideal and practical along

the lines of the separation between a theory and a model. The difference

between a model and a theory is that both can exist independently of one

another—one canhave a theory for a systemwithout being able tomodel it,

while one can also model a system using ad hoc programming techniques,

instead of a coherent general theory.

Most of the practice of programmers (writing and reading code for the

purposes of creating, maintaining and learning software) depends on clos-

ing this gap between the ideal and the practical existences of software.

The third level at which software exists is that of hardware. While

the ideal version of software is presented in natural language, diagrams

or pseudo-code, and while the practical version of software exists as exe-

cutable source code, software also exists at a very physical level—that of

transistors and integrated circuits. To illustrate the chain ofmaterial levels

at which software exist, the series of listings in 39, 40, 41 and 42 perform the

exact same function of implementing a FILLME algorithm, respectively in

pseudo code, in C, in Assembler and in bytecode.

The gradient across software and hardware has been examined thor-

oughly (Kittler, 1997; Chun, 2008; Rapaport, 2005), but never strictly defined.

Rather, the distinction between what is hardware and what is software is

190

#include <string.h>
#include <stdio.h>

int main(){
char* a_word = ”Gerechtigkeit”;
char* an_unword = ”Menschenmaterial”;

int difference = strlen(a_word) - strlen(an_unword);

printf(”%d”, difference);

return 0;
}

Listing 40: Example of a program text represented in a high level language.

See 39 for a higher level representation and 41 and 42 for lower level repre-

sentations.

push %rbp
mov %rsp,%rbp
movl $0xa,-0xc(%rbp)
movl $0x2,-0x8(%rbp)
mov -0xc(%rbp),%eax
sub -0x8(%rbp),%eax
mov %eax,-0x4(%rbp)
mov $0x0,%eax
pop %rbp
ret

Listing 41: Example of a program text represented in an Assembly lan-

guage. See 39 and 40 for a higher level representation and 42 for a lower

level representation.

191

1119: 55
111a: 48 89 e5
111d: c7 45 f4 0a 00 00 00
1124: c7 45 f8 02 00 00 00
112b: 8b 45 f4
112e: 2b 45 f8
1131: 89 45 fc
1134: b8 00 00 00 00
1139: 5d
113a: c3

Listing 42: Example of a program text represented in bytecode. See 39, 40

and 41 for higher level representations.

relative to where one draws the line: to a front-end web developer writing

JavaScript, the browser, operating system and motherboard might all be

considered hardware. For a RISC-V assembly programmer, only the spe-

cific CPU chip might be considered hardware, while the operating system

being implemented in C, itself compiled through Assembly, would be con-

sidered software. A common definition of hardware, as the physical ele-

ments making up the computer system, overlooks the fact that software

itself is, ultimately, physical changes in the electrical charge of the com-

ponents of the computer.

Software can be characterized the dynamic evolution of logical pro-

cesses, described as an ideal specification in natural languages, as a prac-

tical realization in programming languages, and in specific states of hard-

ware components. Furthermore, the relations between each of these levels

is not straightforward: the ideal and the practical can exist independently

of each other, while the practical cannot exist independently of amachine.

For instance, the machine on which a given program text is executed can

be a virtual machine or, conversely, a real machine managing virtual mem-

ory.

In any case, these are only the technical components underpinning

software, its specifications and formalizations. Another dimension of

complexity is introduced by the fact that software is supposed to interact

192

with entities that are not already formalized nor quantized, such as phys-

ical reality and its actors.

Spatio-temporal complexity

A rough way of describing computers is that they are extremely stupid,

but extremely fast (Muon Ray, 1985). The use of programming language

is therefore a semantic translation device between a natural problem, the

formalization of the problem in such a language, and the binary expression

of the program which can be executed by the CPU at very high speeds.

This very high speed of linear execution involves another dimension

to be taken into account by programmers. For instance, the distinction

between endurants and perdurants by Lando et. al. focuses on the tem-

poral dimension of software components (i.e. a data structure declaration

has a different temporal property than a function call) (Lando et al., 2007).

Whether something changes over time, andwhen such a thing changes be-

comes an additional cognitive load for the programmer reading and writ-

ing source code, a load which can be alleviated by data types (such as the

const keyword, marking a variable as unchangeable), or by aestheticmarks

(such as declaring a variable in all capital letters to indicate that it should

not change).

Temporal complexity relates to the discrepancy between the way the

computer was first thought of —i.e. as a Turing machine which operates

linearly, on a one-dimensional tape—and further technological develop-

ments. The hardware architecture of a computer, and its specification as

a Turing machine involve the ability for the head of the machine to jump

at different locations. This means that the execution and reading of a pro-

gramwould be non-linear, jumping from one routine to another across the

source code. Such an entanglement is particulary obvious in Ben Fry’s Dis-

tellamap series of visualizations of source code (3.2 represents the execu-

193

tion of the source code for the arcade game Pac-Man)18.

Furthermore, the machine concept of time is different from the hu-

man concept, and different machines implement different concepts. For

instance, operations can be synchronous or asynchronous, thus positing

opposite frames of reference, since the only temporal reference is the ma-

chine itself19. While humans have somewhat intuitive conceptions of time

as a linearly increasing dimension, computer hardware actually includes

mutliple clocks, used for various track-keeping purposes and structuring

various degrees of temporality (Mélès, 2017).

Later on, the introduction of multi-core architecture for central pro-

cessing units in the late 2000s has enabled the broad adoption of multi-

threading and threaded programming. As a result, source code has trans-

formed from a single non-linear execution to a multiple non-linear pro-

cess, in which several of these non-linear executions are happening in

parallel. Keep tracking of what is executing when on which resource is

involved in problems such as race conditions, when understanding the

scheduling of events (each event every e.g. 1/18000000th of a second on

a 3.0 Ghz CPUmachine) becomes crucial to ensuring the correct behaviour

of the software.

Conversely, the locii of the execution of software creates contributes

to those issues. Even at its simplest, a program text does not necessarily

exist as a single file, and is never read linearly. Different parts can be re-

edited and re-arranged to facilitate the understanding of readers20. Mod-

18This is the kind of convoluted trace of execution which led to Edsger W. Dijkstra’s state-

ment on the harmfulness of such jumps on the cognitive abilities of programmers, especially

the GOOTO statement Dijkstra (1968)
19Baptiste Mélès analyzes this temporal ontology of the computer: ”The clock’s name is

deceptive: even if, viewed from the outside, its operation is based on the regularity of a phys-

ical phenomenon—typically the oscillation of a quartz crystal when an electric current passes

through it—it does not tell the time, as though its job were simply to measure it. Rather, it tells

the machine what time it is. From the machine’s point of view, this is not a component that

reads the time, butwrites it. ” (Mélès, 2017).
20For instance, John Lions’s Commentary On UNIX version 6 includes extensive editorial

194

Figure 3.2: Visualization of the execution of Pac-Man’s source code

195

ern programming languages also have the feature of including other files,

not directly visible to the user. The existence of those files have a textual

manifestation, such as the #include line in C or import in Python, but the

contents of the file can remain elusive.

Where exactly these files exist is not always immediately clear, as their

reference by name or by Uniform Resource Locator (URL) can obfuscate

whether or not a file exists on the current machine. As such, software can

be (dis-)located across multiple files on a single machine, on multiple pro-

cesses on a singlemachine, or onmultiple processes onmultiplemachines

(on a local-area or wide-area network) (Berry, 2011). Facilitating navigation

between files through the references that files hold to one another is one

way that the tools of the programmers alleviate cognitive burden, as we

will see in 3.3.2.

Additionally, time and space in computation can interact in unexpected

ways, and fragments the interface to the object of understanding. For in-

stance, the asynchronicity of requesting and processing information from

distinct processes is a spatial separation of code which has temporal im-

plications (e.g. due to network latency). When and where a certain action

takes place becomes particularly hard to follow.

Modelling complexity

Modeling complexity addresses the hurdles in translating a non-discrete,

non-logical object, event, or action, into a discreete, logical software de-

scription through source code. Indeed, the history of software develop-

ment is also the history of the extension of the application of software,

and the hurdles to be overcome in the process. From translation of natu-

ral languages (Poibeau, 2017), to education (Watters, 2021) or psychological

treatment (Weizenbaum, 1976), it seems that problems that seem somehat

work tomake sense of the textualmatterwrittenbyKenThompsonandDennisRitchie (Lions,

1996)

196

straightforward fromahumanperspective becomemore intricate once the

time for implementation has come.

This translation process involves the development ofmodels; these are

abstract descriptions of the particular entities which are considered to be

meaningful in the problem domain. The process of abstracting elements

of the problem domain into usable computational entities is an essential

aspect of software development, as it composes the building blocks of soft-

ware architectures (see 2.1.1 for discussion of software architects). Abstrac-

tion encompasses different levels, at each of which some aspect of the

problem domain is either hidden or revealed, and finding the right bal-

ance of such showing or hiding in those models does not rely on explicit

and well-known rules. but rather on cognitive principles. Starting from

the observation that there no generalizable rules for modelling classes in

computer science, Parsons andWand suggest that cognitive principles can

be a productiveway foreward21. They base their proposal on the theories of

Lakoff and Johnson, insofar as metaphors operate cognitively by mapping

two entities abstracting at the same level; such a tool for understanding is

further explored in 3.3.1.

For a banking system, this might involve a Client model, an Account

model, a Transfer model and a Report model, among others. The ability

to represent a Client model at a productive abstraction level is then fur-

ther complicated by the conceptual relations that themodel will hold with

othermodels. Some of these relations can bemade explicit or implicit, and

interact in unexpectedways, since they differ fromwhat our personal con-

ception of what a Client is and of what it can do22.

21”The classes we form reflect our experience with things. That is, we form our concepts by

abstracting our knowledge about instances. Furthermore, the concepts we use are not chosen

arbitrarily. Concept theory proposes that classification is governed by the two primary func-

tions of concept formation in human survival and adaptation: cognitive economy and infer-

ence.” (Parsons &Wand, 1997).
22”In the process of modelling some part of the world in an object-oriented fashion the fo-

cus is on identifying concepts and their mutual relations and then describing these by means

197

Working at the ”right” layer of abstraction then becomes a contextual

choice of reflecting the problem accurately, taking into account particu-

lar technical constraints, or the social environment in which the code will

circulate. For instance, choosing to represent a color value as a three-

dimensional vector might be efficient and elegant for an experienced pro-

grammer, but might prove confusing to beginner programmers. The key

aspect of being a triplet might be lost to someone who focuses on the sug-

gested parallels between points in space and a shade of red.

Let us consider a simple abstraction, such as having written publica-

tions, composed of three components: the name of an author, the date of

publication, and the content of the publication. This apprently useful and

practical abstraction becomes non-straightforward once the system that

uses it changes in scale. With a hundred publications, it is easy to reason

about them. With a million publications, the problems themselves start to

change, and additional properties such as tags, indexes or pages should be

considered in modelling the publication for the computer (Cities, 2022).

The aphorism ”All models are wrong, but some are useful” (Box, 1976)

captures the ambiguity of abstraction of amodel from real-world phenom-

ena. The aim of a model is to reduce the complexity of reality into a work-

able, functional entity that both the computer and theprogrammer canun-

derstand. This process of abstraction is the result of judging which parts

of a model are essential, and which are not and, as we have seen in 3.1.1,

judgments involve a certain amount of subjectivity (Weizenbaum, 1976).

Ultimately, the concrete representation of a model involves concrete

syntax through the choice of data types, the design of member functions

and the decision to hide or reveal information to other models. Which in-

dividual tokens and which combination of tokens are used in the repre-

of classes and associations between them. Using existing methods and notation we usually de-

scribe all the classes and the corresponding associations between them in one, flat model, de-

spite the fact that these are typically at different levels of detail. Consequently the description

often appears confusing and disorganized ” (Kristensen, 1994)

198

sentation process then contribute to communicate the judgment that was

made in the abstraction process.

Software involves, through programming languages, the expression of

human-abstracted models for machine interpretation, which in turn is ex-

ecuted at a scale of time and space that are difficult to grap for individu-

als. These properties make it difficult to understand, from conception to

application: software in the real-world go through a process of implemen-

tation of concepts that lose in translation, interfacing the world through

discreete representations, and following the execution of these represen-

tations through space and time. Still, source code is the material repre-

sentation of all of these dynamics and the only point of contact between

the programmer’s agency and themachine execution and, as such, remains

the locus of understanding. Programmers have been understanding soft-

ware as long as they have been writing and reading it. We now turn to the

attempts at studying the concrete cognitive processes deployed by source

code readers and writers as they engage meaningfully with program texts.

3.2.3 The psychology of programming

In practice, programmers manage to write, read and understand source

code as a pre-requisite of producing reliable source code. Being able to

write a program has for effective pre-requisite a thorough understanding

of the problem, intent and platform, making the programming activity a

form of applied understanding23.

How programmers deal with such a complex object as software has

been a research topic which appeared much later than software itself. The

field of software psychology aims at understandinghowprogrammers pro-

cess code, and with which level of success, and under which conditions.

How do they build up their understanding(s), in order to afford appropri-

23”We understand what we are able to program.” (Ershov, 1972)

199

ate modification, re-use or maintenance of the software? What cognitive

abilities do they summon, and what kind of technical apparatuses play a

role in this process? In answering these questions, we will see how the

process of understanding a program text is akin to constructed a series of

mental models, populating a cognitive map.

The earliest studies of how computer programmers understand the

code they are presentedwith consistedmostly in pointing out themethod-

ological difficulties in doing so (Sheil, 1981; Shneiderman, 1977; Weinberg,

1998). This is mainly due to three parameters. First, programming is an

intertwined combination of notation, practices, tasks and management,

each of which have their own impact on the extent to which a piece of

source code is correctly understood, and it is hard to clearly establish the

impact of each of these. Second, program comprehension is strongly in-

fluenced by practice—the skill level of the programmer therefore also in-

fluences experimental conditions24. Third, these early studies have found

that programmers have organized knowledge bases, if informal and im-

material. This means that, while programmers demonstrate epistemic

mastery, they are limited in their ability to explain the workings of such

ability.—that is, the constitution and use of their own mental models.

Marian Petre and Alan Blackwell attempted in their 1992 study to iden-

tify these mental models and their uses. They asked 10 expert program-

mers from North America and Europe to describe the thought process in

source code-related problem-solving and design solutions in code. While

this study was an investigation into the design of code, before any writ-

ing happens, one of the limitations is that it did not investigate the under-

standing of code, which takes places once the writing has been done (by

24Weinberg establishes a connection between value and the appropriate level of skill ap-

plication: ”The moral of this tale—and a hundred others like it—is that each program has an

appropriate level of care and sophistication dependent on the uses to which it will be put. Work-

ing above that level is, a way, even less professional than working below it. If we are to know

whether an individual programmer is doing a good job, we shall have to know whether or not

he is working on the proper level for his problem.” (Weinberg, 1998)

200

oneself, or someone else), and the code now needs to be read.

The main conclusion of their study is that, beyond the fact that each

programmer had slightly different descriptions of their mental process,

there are some commonalities towhat is happening in someone’s thoughts

as they start to design software. The behaviour is dynamic, but controlled;

the resolutionof that behaviourwas also dynamic, with someaspects com-

ing in and out of focus that the will of the programmer, providing more or

less uncertainty, level of details and fuzziness on-demand; and those im-

ages co-existed with other images, such that one representation could be

comparedwith another representation of a different nature (Petre & Black-

well, 1997). Finally, while most imagery was non-verbal, all programmers

talked about the need to have elements of this imagery labelled at all times,

hinting at a relationship between syntax and semantics to be translated

into source code.

Francoise Détienne, in her study of how computer programmers design

and understand programs (Detienne, 2001), defines the activity of design-

ing and understanding programs in activating schemas, mental represen-

tations that are abstract enough to encompass a wide use (web servers all

share a common schema in terms of dealing with requests and responses),

but nonetheless specific enough to be useful (requests and responses are

qualitatively different subsets of the broader concept of inputs and out-

puts). An added complexity to the task of programming comes with one

of the dual nature of the mental models needing to be activated: the com-

puter’s actions and responses are comprised of the prescriptive (what the

computer should do) to the effective (what the computer actually does).

In order to be appropriately dealt with, then, programmers must activate

and refine mental models of a program which resolves this tension. To

do so, they seem to resort to spatial activities, such as chunking and trac-

ing (Cant et al., 1995), thus hinting at a need to delimitate some cognitive

objects with a material metaphor, and connecting those concepts with a

spatial metaphor.

201

In programming, within a given context—which includes goals and

heuristics—, elements are being perceived, processed through existing

knowledge schemas in order to extract meaning. Starting from Kintsch

and Van Dijk’s approach of understanding text (Kintsch & van Dijk, 1978),

Détienne nonetheless highlights some differences with natural language

understanding. In program texts, she finds, there is an entanglement of the

plan, of the arc, of the tension, which does not happen so often in most of

the traditional narrative text. A programmer can jump between lines and

files in a non-linear, explorative manner, following the features of compu-

tation, rather than textuality. Program texts are also dynamic, procedural

texts, which exhibit complex causal relations between states and events,

which need to be kept track of in order to resolve the prescriptive/effec-

tive discrepancies. Finally, the understanding of program text is first a

general one, which only subsequently applies to a particular situation (a

fix or an extension needing to be written), while narrative texts tend to fo-

cus on specific instances of protagonists, scenes and descriptions, leading

to broad thematic appreciation.

Conversely, a similarity in understanding program texts and narrative

texts is that the sources of information for understanding either are: the

text itself, the individual experience and the broader environment inwhich

the text is located (e.g. technical, social). Building on Chomsky’s con-

cepts, the activity of understanding in programming can be seen as under-

standing the deep structure of a text through its surface structure (Chom-

sky, 1965). One of the heuristics deployed to achieve such a goal is look-

ing out for what she calls beacons, as thematic organizers which structure

the reading and understanding process (Wiedenbeck, 1991; Koenemann &

Robertson, 1991). For instance, in traditional narrative texts, beaconsmight

be represented by section headings, or the beginning or end of paragraphs.

However, one of the questions that her study hasn’t answered specifically

is how the specific surface structure in programming results in the under-

standing of the deep structure—in other terms, what is the connection be-

202

tween source code syntax, programmer semantics and program behavior.

Détienne’s work ushers in the concept of a mental model as means of

understanding in programmers, which proved to be a fruitful, if not set-

tled field of research. Mental models are a dynamic representation formed

in working memory as a result of using knowledge from long term mem-

ory and the environment (Cañas & Antolí, 1998). As such, they are a kind

of internal symbolic representation of an external reality, are a rigorous,

personal and conceptual structure. They are related to knowledge, since

the construction of accurate and useful mental models through the pro-

cess of understanding is shaped by, and also underpins knowledge ac-

quisition. However, mental models need not be correlated with empiri-

cal truth, due to their personal nature, but are extensive enough to be de-

scribed by formal (logical or diagrammatical) means. Mental models can

be informed, constructed or further qualified by the use of metaphors, but

they are nonetheless more precise than other cognitive structures such as

metaphors—a mental model can be seen as a more specific instance of a

conceptual structure than a metaphor.

Further research on mental model acquisition have established a few

parameters which influence the process. First, programmers have a back-

ground knowledge that they activate through the identification of specific

recurring patterns in the source code, confirming Détienne characteriza-

tion of the roles of beacons. Second, mental models seem to be organized

either as a layered set of abstractions, providing alternative views of the

system as needed, or as a groups or sets of heuristics. Finally, program-

mers use both top-down processes of recognizing familiar patterns, they

also make use of bottom-up techniques to infer knowledge from which

they can then construct or refine a mental model (Heinonen et al., 2023).

Epistemic actions, the kinds of actions which change one’s knowledge

of the object on which the actions are taken, contribute to reducing the

kinds of complexities involved with software. Concretely, this involves re-

fining the idea that one has of the software system at hand, by comparing

203

the result of the actions taken with the current state of the idea(s) held.In

their work on computer-enabled cognitive skills, Kirsh andMaglio develop

on the use of epistemic actions:

More precisely, we use the term epistemic action to designate a

physical action whose primary function is to improve cognition

by:

1. reducing the memory involved in mental computation, that

is, space complexity;

2. reducing the number of steps involved in mental computa-

tion, that is, time complexity;

3. reducing the probability of error ofmental computation, that

is, unreliability.

(Kirsh &Maglio, 1994)

Since epistemic actions rely on engaging with a text, at the syntax

and semantics level, it has often been assumed by programmers and re-

searchers that reading and writing code is akin to reading and writing nat-

ural language. Additional recent research in the cognitive responses to

programming tasks, conducted by Ivanova et. al., do not appear to set-

tle the question of whether programming is rather dependent on language

processing brain functions, or on functions related tomathematics (which

do not rely on the language part of the brain) (Ivanova et al., 2020), but

contributes empirical evidence to that debate. They conclude that, while

language processing might not be one of the essential ways that we pro-

cess code—excluding the code is text hypothesis—, it also does not rely

on exclusively mathematical functions. Stimulating in particular the so-

called multi-demand system, it seems that programming is a polymor-

phous activity involvingmultiple exchanges between different brain func-

tions. What this implies, though, is that neither literature, linguistics nor

mathematics should be the only lens through which we look at code.

204

In a way, then, programming is a sort of fiction, in that the pinpointing

of its source of existence is difficult, and in that it affords the experience of

imagining contents of which one is not the source, and of which the cer-

tainty of isn’t defined, through a particular syntactic configuration. Both

programming and fiction suggest surface-level guiding points helping the

process of constructing mental models as a sort of conceptual representa-

tion. It is also something else than fiction, in that it deals with concrete

issues and rational problems 25, and that it provides a pragmatic frame

for processing representations, in which assumptions stemming from bur-

geoning mental models can be easily verified or falsified, through the tak-

ing of epistemic actions. It might then be appropriate to treat it as such,

simultaneously fiction and non-fiction, as knowledge and action, mathe-

matic and artistic. Indeed, it is also an artistic activitywhich, inGoodman’s

terms, might be seen as an analysis of [artistic] behavior as a sequence of

problem-solving and planning activities.” (Goodman & Others, 1972).

Remains the interpretation issue mentioned above: the interpretation

of the machine is different from the interpretation of the human, of which

there are many, and therefore what also needs to be intepreted is the in-

tent of the author(s). Such a tension between the computer’s position as

an extremely fast executer and the programmer’s position as a cognitive

agent is summer up by Niklaus Wirth in Beauty Is Our Business, Dijkstra’s

festschrift: ”What the computer interprets, I wanted to understand.” (Wirth,

1990).

One key aspect of the acquisition process seems to be mapping or link-

ing features of the actual target system to its mental representation. The

result of have been referred to as cognitivemaps or knowledgemaps. Here

The complexities of software are echoed in how programmers evoke

their experience of either designing or, comprehending code. They have

shown to use multiple cognitive abilities, without being strictly limited to

narrative, or mathematic frames of understanding, and making use of no-
25More often than not, a pestering bug

205

tions of scale and focus to disentangle complexity. For the remaining sec-

tion of this chapter, we will focus on two specific means that contribute to

this process of building amental model of software-as-source code. Based

on the reports that programmersusemental images andplaywithdynamic

mental structures to comprehend the functional and structural properties

of software, we can now say that understanding of a program text involves

the construction of mental models. This happens through a process of

mapping textual cues with background knowledge at various layers of ab-

straction, resulting in a cognitive cartography allowing for an program text

to be made intelligible, and thus functional, to the programmer.

We conclude this chapter with a look at two practical ways in which

sense inmade from computational systems. From a linguistic perspective,

we look at the role that metaphors play in translating computational con-

cepts into ones which can be grasped by an individual. From a technical

perspective, we start from the role of layout (indentation, typography) to

develop on the concept of extended cognition to see how understanding is

also located in a programmers’ tools.

3.3 Means of understanding

Drawing on the ambivalence of software’s existence—both concrete and

abstract—, as well as on the various way that software is a complex cog-

nitive object to grasp, we now investigate the means deployed to render

it meaningful to an individual. As we have seen in empirical studies, pro-

grammers resort to textual perusing in order to build up mental models.

In this section, we look at the particular syntactic tokens that are used

tometaphorically convey themeaning of a computational element, as well

206

as the medium through which the medium is perused—via integrated de-

velopment environments. This will conclude our inquiry into software’s

complexities and into how metaphors and textual manipulation facilitate

the construction ofmentalmodels, beforewe inquire specifically about the

ways in which aesthetics play a role in this process.

3.3.1 Metaphors in computation

Our understanding of metaphors relies on the work of George Lakoff

and Mark Johnson26 due to their requalification of the nature and role

of metaphor beyond an exclusively literary role. While Lakoff and John-

son’s approach to the conceptual metaphor will serve a basis to explore

these linguistic devices as a cognitivemeans across software andnarrative,

we also argue that Ricoeur’s focus on the tension of the statement rather

than primarily on thewordwill help us better understand some of the aes-

thetic manifestations and workings of software metaphors. Following a

brief overview of their contributions, we then examine the various uses of

metaphor in software, from end-users to programmers.

Theoretical background

We start from from the most commonly used definition of metaphor:

that of labeling one thing in terms of another, thereby granting addi-

tional meaning to the subject at hand. Our approach here will also bypass

some of the more minute distinctions of literary devices made between

metonymy (in which the two things mentioned are already conceptually

closely related), comparison (explicitly assessing differences and similari-

ties between two things, often fromavalue-basedperspective) and synech-

doche (representing a whole by a subset), as we consider these all subsets

of the class of metaphors.

26We also develop from Ricoeur’s conception of metaphors in 4.2.1.

207

Lakoff and Johsnon’s seminal work develops a theory of conceptual

metaphors by highlighting their essential dependence on pre-existing cog-

nitive structures, which we associate with already-understood concepts.

The metaphor maps a source domain (made up of cognitive structure(s))

to a target domain. In the process, they extend the field of applicability

of metaphors from the strictly literary to the broadly cultural: metaphors

work because each of us has some conception of those domains involved

in the metaphorical process.

Metaphors rely in part on a static understanding, resulting in a fixed

meaning from the application of a given source to a given target, butwhich

can nonetheless suggest the property of dynamic evolution. These source

cognitive structures possess schemas, which are defined enough to not be

mistaken for something else, but broad enough to allow for multiple vari-

ants of itself to be applied to various targets, providing both reliability and

diversity (Lakoff & Johnson, 1980). As we will see below, their approach

allows us to focus not just on textual objects, but on the vast range of

metaphors used also in computing-related environments. Given that the

source of themetaphor should be well-grounded, with as little invariablity

as possible, in order to qualify a potentially ill-defined target domain, we

see how this is a useful mechanism to provide an entrypoint to end users

and novice programmers to grasp new or foreign concepts.

Starting with the role of metaphors manifested in expressions such as

the desktop, the mouse, or the cloud for end-users, we will then turn to the

programmers relationships to their environment as understoodmetaphor-

ically. The relationship between poetic metaphor and source code will be

developed in 5.2.2; with the topic of syntax and semantics in programming

languages in 5.1.1, we will see that metaphor-induced tensions can be a fer-

tile ground for poetic creation through aesthetic manifestations.

208

Metaphors for end-users

It is interesting to consider that the first metaphor in computing might be

concommitant with the first instance of modern computing—the Turing

machine. While Turing machines are widely understood as being mani-

fested into what we call digital computers (laptops, tablets, smartphones,

etc.), and thus definitely within the realm of mechanical devices, the Tur-

ing machine is not strictly a machine per se. Rather, it is more accurately

defined as a mathematical model which defines an abstract machine. In-

deed, as we saw in 3.2.1, computers cannot be proven or assumed to be ma-

chines, because their terminology comes from logic, textual, or discursive

traditions (e.g. reference, statement, names, recursion, etc.) and yet they

are still built (Smith, 1998). Humans can be considered Turing machines

(and, in fact, one of the implicit requirements of theTuringmachine is that,

given enough time and resources, a human should be able to compute any-

thing that the Turingmachine can compute), and non-humans can also be

considered Turing machines27. Debates in computer science related to the

nature of computing (Rapaport, 2005) have shown that computation is far

from being easily reduced to a simple mechnical concern, and the com-

plexity of the concept is perhaps whywe ultimately revert tometaphors in

order to better grasp them.

As non-technical audiences came into contact with computation

through the advent of the personal computer, these uses of metaphors be-

came more widespread and entered public discourse once personal com-

puting became available to ever larger audiences. With the release of the

XEROX Star, features of the computer which were until then described as

data processing were given a new life in entering the public discourse. The

Star was seminal since it introduced technological innovations such as a

bitmapped display, a two-button mouse, a window-based display includ-

27See research in biological computing, using DNA and protein to perform computational

tasks (Garfinkel, 2000)

209

ing icons and folders, called a desktop. In this case, the desktop metaphor

relies on previous understanding of what a desktop is, and what it is used

for in the context of physical office-work; since early personal comput-

ers were marketed for business applications, these metaphors built on the

broad cognitive structures of the user-base in order to help them make

sense of this new tool.

PaulDuGay, in his cultural studyof theWalkman,makes a similar state-

ment when he describes Sony’s invention, a never-before-seen compound

of technological innovations, in termsof pre-existing, andwell-established

technologies (du Gay et al., 2013). The icon of a floppy disk for writing data

to disk, the soundofwrinkledpaper for removingdata fromdisk, the desig-

nation of a broad network of satellite, underground and undersea commu-

nications as a cloud, these are all metaphors which help us make a certain

sense of the broad possibilities brought forth by the computing revolution

(Wyatt, 2004). Even the clipboard, presented to the user to copy content

across applications, does not believe at all like a real clipboard (Barrera,

2022).

The work of metaphors takes on an additional dimension when we in-

troduce the concept of interfaces. As permeable membranes which enable

(inter)actions between the human and the machine, they are essential in-

sofar as they render visible, and allow for, various kinds of agency, based

on different degrees of understanding. Departing from the physically pas-

sive posture of the reader towards an active engagement with a dynamic

system, interfaces highlight even further the cognitive and (inter)active

role of the metaphor.

These depictions of things-as-other-things influence themental model

which we build of the computer systemwe interact with. For instance, the

prevalent windowsmetaphor of our contemporary desktop and laptop en-

vironments obfuscates the very concrete action of the CPU (or CPUs, in

the case of multi-core architecture) of executing one thing at a time, ex-

cept at speeds which cannot be intuitively grasped by human perception.

210

Alexander Galloway ’s work on interfaces asmetaphorical representations

suggests a similar concern of obfuscation, as he recall Jameson’s theory of

cognitive mapping. Jameson uses it in a political and historical context,

defining that a cognitive mapping is a ””a situational representation on the

part of the individual subject to that vaster and properly unrepresentable to-

tality which is the ensemble of society’s structures as a whole”” (Jameson,

1991). To do so, Jameson starts from Lynch’s inquiry into the psychic rela-

tion to the built environment (which we will return to in 4.3), insofar as a

cognitive map is necessary to deploy agency in a foreign spatial environ-

ment, an environment which Jameson associates with late capitalism.

Galloway productively deploys this heuristic in the context of inter-

faced computer work: cognitive mapping is the process by which the indi-

vidual subject situates himself within a vaster, unrepresentable totality, a

process that corresponds to the workings of ideology28. Here, we can see

how metaphors can act as both cognitive tools to make sense of objects,

but also as obfuscating devices to cloak the reality of the environment29.

The cognitive processes enable by metaphors help provide a certain sense

of the unthinkable, of that which is too complex to grasp and therefore

must be put into symbols (words, icons, sounds, etc.).

Nielsen and Gentner develop on some challenges that arise when one

usesmetaphors not just for conceptual understanding, but for further con-

ceptualmanipulation. InTheAnti-Mac Interface, they point out that differ-

ences in features between target domain and source domain are inevitable.

For instance, a physical pen would be able to mark up any part of a phys-

ical form, whereas a tool symbolize by a pen icon on a document edit-

ing software might restrict an average user to specific fields on the form.

Their study leads to assess alternatives to one kind of interface30, in or-

28The relation between which has been explored by Galloway, Chun, Holmes and others,

and is particularly apparent in how an operating system is designated in French: système

d’exploitation, an exploitation system (Galloway, 2006; Chun, 2005).
29Indeed, data centers are closer to mines than to clouds.
30In their study, they refer to the one designed by Apple for the Macintosh in the 1990s.

211

der to highlight how a computer systemwith similar capabilities (both be-

ing Turing-complete machines), could differ in (a) the assumptions made

about the intent of the user, (b) the assumptions made about the expertise

level of the user and (c) the means presented to the user in order to have

them fulfill their intent (Gentner & Nielsen, 1996).

Movingaway fromuserland, inwhichmost of thesemetaphors exist, we

now turn to examine the kinds ofmetaphors that are used byprogrammers

and computer scientists themselves. Since the sensual reality of the com-

puter is that it is a high-frequency vibration of electricity, one of the first

steps taken to productively engage with computers is to abstract it away.

The word computer itself can be considered as an abstraction: originally

used to designate the women manually inputting the algorithms in room-

scale mainframes, the distinction between the machine and its operator

was considered to be unnecessary. The relation between metaphor and

abstraction is a complex one, but we can say thatmetaphorical thought re-

quires abstraction, and that the process of abstraction ultimately implies

designating one thing by the name of another (a woman by amachine’s, or

a machine by a woman’s), being able to use it interchangeably, and there-

fore lowering the cognitive friction inherent to the process of specification,

freeing up mental resources to focus on the problem at hand (Chun, 2005).

Metaphors are implicitly known not to be true in their most literal

sense. Max Black inModels and Metaphors argues that metaphors are too

loose to be useful in analytic philosophy but, like models they help make

concepts graspable and render operation to the computer conceivable, in-

dependently of the accuracy of the metaphor to depict the reality of the

target domain.

Abstraction, metaphors and symbolic representations are therefore

used tools when it comes to understanding some of the structures and ob-

jects which constitute computing and software, in terms of trying to rep-

resent to ourselves what it is that a computer can and effectively does, and

in terms of explaining to the computer what it is we’re trying to operate on

212

(from an integer, to a non-ASCII word, to a renewable phone subscription

or to human language).

When they concern the work of programmers, these tools deployed

during the representational process differ from conventional or poetic

metaphors insofar as they imply some sort of productive engagement and

therefore empirically verifiable or falsifiable. These models are means

throughwhich we aim at constructing the conceptual structures on which

metaphors also operate, and explicit them in formal symbol systems, such

as programming languages.

Programmer-facingmetaphors

Programmers, like users, also rely heavily on metaphors to project mean-

ing onto the entities that they manipulate. Fundamentally, the work of

these metaphors are not different from the ones that operate in the public

discourse, or at the graphical interface level; nonetheless, they show how

they permeate computer work in general, and source code in particular.

Perhaps one of the first metaphors a programmer encounters when

learning about the discipline is the one stating that a function is like a

kitchen recipe: you specify a series of instructionswhich, given some input

ingredients (arguments), result in an output result (return value). However,

the recipe metaphor does not allow for an intuitive grasping of overload-

ing, the process through which a function can be called the same way but

do things with different inputs. Similarly, the use of the term server is con-

ventionally associated and represented as a machine sending back data

when asked for it, when really it is nothing but an executed script or pro-

cess running on said machine.

Another instance of symbolic use relying on metaphorical interpreta-

tion can be found in the word stream. Originally designating a flow of wa-

ter within its bed, it has been gradually accepted as designating a contin-

uous flow of contingent binary signs. Memory, in turn, stands for record,

213

and is stripped down of its essentially partial, subjective and fantasized as-

pects usually highlighted in literary works (perhaps volatile memory gets

closer to that point). Finally, objects, which came to prominence with the

rise of object-oriented programming, have only little to do with the physi-

cal properties of objects, with no affordance for being traded, for acting as

social symbols, for gaining intrinsic value, but rather the word is used as

such for highlighting its boundedness, states and actions, and ability to be

manipulated without interfering with other objects.

Most of these designations, stating a thing in terms of another aren’t

metaphors in the full-blown, poetic sense, but they do, agains, hint at the

need to represent complex concepts into humanly-graspable terms, what

Paul Fishwick calls text-based aesthetics (Fishwick, 2006). The need for

these is only semantic insofar as it allows for an intended interaction with

the computer to be carried out successfully—e.g. one has an intuitive un-

derstanding that interrupting a stream is an action which might result in

incompleteness of thewhole. This process of linguistic abstraction doesn’t

actually require clear definitions for the concepts involved. For instance,

example of the terminology in modern so-called cloud computing uses a

variety of terms stacked up to each other in what might seem to have no

clear denotative meaning (e.g. Google Cloud Platform offers Virtual ma-

chine compute instances), but nonetheless have a clear operativemeaning

(e.g. the thing on whichmy code runs). This further qualifies the complex-

ity of the sense-making process in dealing with computers: we don’t actu-

ally need to truly understandwhat is preciselymeant by a particular word,

as long as we use it in a way which results in the expected outcome. That

being said, there is a certain correlation between skills andmetaphors: the

more skilled a programmer is, the less they resort to metaphors and they

more they consider things ”as they are” (McKeithen et al., 1981).

This need to re-present the specificities of the machines has also been

one of the essential drives in the development of programming languages.

Since we cannot easily and intuitively deal with binary notation to rep-

214

resent complex concepts, programming helps us deal with this hurdle by

presenting things in terms of other things. Most fundamentally, program-

ming languages represent binary signs in terms of English language (e.g.

frombinary to Assembly, see 3.2.2). This is, again, by nomeans ametaphor-

ical process, but rather an encoding process, inwhich tokens are being sep-

arated and parsed into specific values, which are then processed by the

CPU as binary signs.

Still, this abstraction layer offered by programming languages allowed

us to focus on what we want to do, rather than on how to do it. The

metaphorical aspect comes in when the issue of interpretation arises, as

the possibility to deal with more complex concepts required us to grasp

them in a non-rigorous way, one which would have a one-to-one mapping

between concepts. Allen Newell and Herbert A. Simon, in their 1975 Tur-

ing Award lecture, offer a good example of symbolic manipulation relates

inherently to understanding and interpretation:

In none of [Turing and Church’s] systems is there, on the surface,

a concept of the symbol as something that designates.

The complement to what he calls the work of Turing and Church as au-

tomatic formal symbol manipulation is to be completed by this process of

interpretation, which they define simply as the ability of a system to des-

ignate an expression and to execute it. We encounter here one of the es-

sential qualities of programming languages: the ambivalence of the term

interpretation. A machine interpretation is clearly different from a human

interpretation: in fact, most people understand binary as the system com-

prised of two numbers, 0 and 1, when really it is intepreted by the computer

as a system of two distinct signs (red and blue, Alex andMax, hot and cold,

etc.). To assist in the process of human interpretation, metaphors have

played a part in helping programmers construct useful mental representa-

tions related to computing. Keywords such as loop, wildcard, catch, or fork

are all metaphorical denomations for computing processes.

215

These metaphors can go both ways: helping humans understand

computing concepts, and to a certain extent, helping computers under-

stand human concepts. This reverse process, using metaphors to rep-

resent concepts to the computer, something we touched upon in 3.2.2,

brings forth issues of conceptual representation through formal sym-

bolic means. The work of early artifical intelligence researchers consisted

not just in making machines perform intelligent tasks, but also implies

that intelligence itself should be clearly and inambiguously represented.

The work of Terry Winograd, for instance, was concerned with language

processing—that is,intepretation and generation. Through his inquiry, he

touches on the different ways to represent the concept of language in

machine-operational terms, and highlights two possible represenations

which would allow a computer to interact meaningfully with language

(Winograd, 1982). He considers a procedural representation of language,

one which is based on algorithms and rules to follow in order generate

an accurate linguistic model, and a declarative representation of language,

which relies on data structures which are then populated in order to cre-

ate valid sentences. At the beginning of his exposé, he introduces the his-

torically successive metaphors which we have used to build an accurate

mental representation of language (language as law, language as biology,

language as chemistry, language as mathematics). As such, we also try to

present language in other terms than itself in order to make it actionable

within a computing environment, in a mutually informing movement.

Metaphors are used as cognitive tools in order to facilitate the construc-

tion of mental models of software systems. The implication of spatial and

visual components in mental models already highlighted by Lakoff and

Johnson, and pointed out through the psychology experiments on pro-

grammers allow us to turn to metaphors as an architecture of thought

(Forsythe, 1986). Metaphors operate cognitively, Lakoff and Johnson ar-

gue, because of the embodiment which underpins every individual’s per-

ception. Therefore, such a use of metaphors points to the spatial nature

216

of the target domain, something already suggested by the concept of map-

ping in 3.2.3. Complementing the semantic structure of metaphor, we now

turn to another conception of space in program texts: the syntactic struc-

ture of source code, upon which another kind of tools can operate.

3.3.2 Tools as a cognitive extension

Metaphors make use of their semantic properties in order to allow users

to build an effective mental model of what the system is or does; as the

result, they allow programmers to build up hypotheses and take epistemic

actions to see whether their mental model behaves as expected. Some of

the keywords of programming languages are thusmetaphorical. However,

one can alsomake use of the syntactical properties of source code in order

to facilitate understanding differently. We see here how these tools take

part in a process of extended cognition.

We have seen in 3.3.1 how interfaces decide on theway the abstract enti-

ties are represented, delimited and accessed. They can nonetheless also go

beyond representation in order to alleviate cognitive load through techni-

cal affordances, by providing as direct access as possible to the underlying

abstract entities represented in source code’s structure.

Looking at it from the end-user’s perspective, there is software which

focuses on knowledge acquisition through direct manipulation. For in-

stance, Ken Perlin’s Chalktalk focuses on freehand input creation and pro-

grammatic input modification in order to explore properties and relations

of mathematical objects (e.g. geometrical shapes, vectors, matrices) (Per-

lin, 2022), while Brett Victor’s Tangled focuses in a very sparse textual rep-

resentation of a dynamic numerical model. The epistemic actions taken

within this system thus consists in manipulating the numbers presented

in the text result in the modification of the text based on these numbers

(Victor, 2011b,a).

For programmers, the kind of dedicated tool used to deal with source

217

code is called Integrated Development Environment (IDE). With a specific

set of features developing over time, and catered to the needs and practices

of programmers, IDEs cover multiple features to support software writing,

reading, versioning and executing—operations which go beyond the sim-

ple reading of text (Kline & Seffah, 2005).

One of the first interfaces for writing computer code included the text

editor called EMACS (an acronym for Editor MACroS), with a first version

released in1976. Containing tens of thousands of commands to be input by

the programmer at the surface-level in order to affect the deeper level of

the computing system, EMACS allows for remote access of files, modeful

and non-linear editing, as well as buffer-based manipulation Vim (Green-

berg, 1996). This kind of text editor acts as an interfacing system which

allows for the almost real-time manipulation of digitized textual objects.

While software such as EMACS and Vim are mostly focused on produc-

tivity of generic text-editing, other environments such as Turbo Pascal or

Maestro I focused specifically on software development tasks in a particu-

lar programming language in software such as the Apple WorkShop (1985)

(West, 1987), or the Squeak system for the Smallktalk programming lan-

guage (Ingalls et al., 1997). These tools take into account the particular at-

tributes of software to integrate the tasks of development (such as linking,

compiling, debugging, block editing and refactoring) into one software, al-

lowing the programmer to switch seamlessly from one task to another, or

allowing a task to run in parallel to another task (e.g. indexing and edit-

ing). Kline and Seffah state the goals of such IDEs: ”Such environments

should (1) reduce the cognitive load on the developer; (2) free the developer

to concentrate on the creative aspects of the process; (3) reduce any adminis-

trative load associatedwith applying a programmingmethodmanually; and

(4) make the development process more systematic.” (Kline & Seffah, 2005).

Oneof theways that IDEs started to achieve these goalswas bydevelop-

ing more elaborated user-interfaces, involving more traditional concepts

of aesthetics (such as shape, color, balance, distance, symmetry). At the

218

surface level, concerned only with the source code’s representation, and

not with its manipulation. Indeed, since the advent of these IDEs, studies

have demonstrated the impact that such formal arrangement has on pro-

gram comprehension(Oman & Cook, 1990b; Oliveira et al., 2022). Spacing,

alignment, syntax highlighting and casing are all parameters which have

an impact on the readability, and therefore understandability of code, as

shown in .

Understanding the source code is impacted both by legibility (concern-

ing syntax, and whether you can quickly visually scan the text and de-

termine the main parts of the text, from blocks to words themselves) and

readability (concerning semantics, whether you know the meaning of the

words, and their role in the group) (Oliveira et al., 2020; Jacques & Kristens-

son, 2015). In 43 and 44, we show an excerpt of a function from the Tex-Live

source code (Berry, 2022), formatted and unformatted.

IDEs therefore solve some of the mental operations performed by pro-

grammers when they engage with source code, such as representing code

blocks through proper indentations. The automation of tooling and work-

flow increased in software such as Eclipse, IntelliJ, NetBeans, WebStorm

Visual Studio Code31 has led to further entanglements of technology and

appearance. By organizing code space through actions such as self docu-

mentation, folding code blocks, finding function declarations, batch refor-

matting and debug execution, they facilitate cognitive operations such as

chunking, tracing, or highlighting beacons (Bragdon et al., 2010). These

technical features show how a tool which operate at primarily the aes-

thetic level has consequences on the understandability of the system rep-

resented, even though this is, again, dependent on the skill level of the pro-

grammer (Kulkarni & Varma, 2017).

A significant dimension in which source code is being automatically

formatted is the use of styleguides. The evolution of software engineering,

from the individual programmer implementing ad hoc and personal so-
31Through which this thesis is written.

219

void texfile::prologue(bool deconstruct)
{

if (inlinetex)
{

string prename = buildname(settings::outname(), ”pre”);
std::ofstream *outpreamble = new

std::ofstream(prename.c_str());↪→

texpreamble(*outpreamble, processData().TeXpreamble, false,
false);↪→

outpreamble->close();
}

texdefines(*out, processData().TeXpreamble, false);
double width = box.right - box.left;
double height = box.top - box.bottom;
if (!inlinetex)
{

if (settings::context(texengine))
{

*out << ”\\definepapersize[asy][width=” << width <<
”bp,height=”↪→

<< height << ”bp]” << newl
<< ”\\setuppapersize[asy][asy]” << newl;

}
else if (pdf)
{

if (width > 0)
*out << ”\\pdfpagewidth=” << width << ”bp” << newl;

*out << ”\\ifx\\pdfhorigin\\undefined” << newl
<< ”\\hoffset=-1in” << newl
<< ”\\voffset=-1in” << newl;

if (height > 0)
*out << ”\\pdfpageheight=” << height << ”bp”

<< newl;
*out << ”\\else” << newl

<< ”\\pdfhorigin=0bp” << newl
<< ”\\pdfvorigin=0bp” << newl;

if (height > 0)
*out << ”\\pdfpageheight=” << height << ”bp” << newl;

*out << ”\\fi” << newl;
}

}

// ...
if (!deconstruct)

beginpage();
}

Listing 43: Example of a program text with syntax highlighting and

machine-enforced indentation. See 44 for a functional equivalent, unfor-

matted.

220

void texfile::prologue(bool deconstruct){if(inlinetex) {
string prename=buildname(settings::outname(),”pre”);
std::ofstream *outpreamble=new std::ofstream(prename.c_str());
texpreamble(*outpreamble,processData().TeXpreamble,false,false);
outpreamble->close();
}

texdefines(*out,processData().TeXpreamble,false);
double width=box.right-box.left;
double height=box.top-box.bottom;
if(!inlinetex) {
if(settings::context(texengine)) {
*out << ”\\definepapersize[asy][width=” << width << ”bp,height=”
<< height << ”bp]” << newl
<< ”\\setuppapersize[asy][asy]” << newl;
} else if(pdf) {
if(width > 0)
*out << ”\\pdfpagewidth=” << width << ”bp” << newl;
*out << ”\\ifx\\pdfhorigin\\undefined” << newl
<< ”\\hoffset=-1in” << newl
<< ”\\voffset=-1in” << newl;
if(height > 0)
*out << ”\\pdfpageheight=” << height << ”bp”
<< newl;
*out << ”\\else” << newl
<< ”\\pdfhorigin=0bp” << newl
<< ”\\pdfvorigin=0bp” << newl;
if(height > 0)
*out << ”\\pdfpageheight=” << height << ”bp” << newl;
*out << ”\\fi” << newl;
}
}
//-...
if(!deconstruct)
beginpage();
}

Listing 44: Example of a program text without syntax highlighting nor

machine-enforced indentation. See 43 for a functional equivalent, format-

ted.

221

lutions to a group of programmers coordinating across time and space to

build and maintain large, distributed pieces of software, brought the ne-

cessity to harmonize and standardize how code is written—style guides

started to be published to normalize the visual aspect of source code.

These, called linters, are programs which analyzes the source code being

written in order to flag suspicious writing (which could either be suspi-

cious from a functional perspective, or from a stylistic perspective). They

act as a sort of intermediary object, insofar as they assist individuals in the

process of creating another object (Jeantet, 1998). Making use of formal

syntax, IDEs’ automatic styling of contributes to collective sense-making,

something that we discuss further in 5.1.3.

This move from legibility (clear syntax) to readability (clear semantics)

enables a cetain kind of fluency, the process of building mental structures

that disappear in the interpretation of the representations. The letters and

words of a sentence are experienced as meaning rather than markings,

the tennis racquet or keyboard becomes an extension of one’s body, and

so forth. Well-functioning interfaces are thus interfaces which disappear

from the cognitive process of their user, allowing them to focus on ends,

rather than on means (Galloway, 2012), leading to what Paul A. Fishwick

has coined aesthetic programming, an approach of how attention paid to

the representation of code in sensory ways results in better grasping of the

metaphors at play in code.

Therefore, automatic tools operate at the surface-level but also with

consequences at the deep-level, helping visualize and navigate the struc-

ture of a program text. In this case, we witness how computer-aided soft-

ware engineering in the form of IDEs can be considered as a cognitive tool,

a combination of surface representation affording direct interaction inter-

face, whose formal arrangements and affordances facilitate direct engage-

ment with the conceptual structures underlying in a program text. Percep-

tion and comprehension of source code is thereforemore andmore entan-

gled with its automated representation.

222

Extended cognition

The roots of computer-enabled knowledge management can be found

in the work of the encyclopedists, and scientists in seventeenth-century

europe, as they approached knowledge as something which could, and

should be rationalized, organized and classified in order to be retrievable,

comparable, and actionable (Sack, 2019). Scholars such as Roland Barthes,

Jacques Derrida or Umberto Eco had specific knowledge-management

techniques in order to let them focus on the arguments and ideas at hand,

rather than on smaller organizational details, through the use of index

cards; whether paper or digital, technology itself is a prosthesis for mem-

ory, an external storage which offloads the cognitive burden of having to

remember things (Wilken, 2010).

Laying out his vision for a Man-Computer Symbiosis, J.C.R. Licklider,

project leader of what would become the Internet and trained psychol-

ogist, emphasized information management. He saw the computer as a

means to ”augment the human intellect by freeing it from mundane tasks”

(Licklider, 1960). By being able to delegate such mundane tasks, such

as manually copying numbers from one document to another, one could

therefore focus on the most cognition-intensive tasks at hand. While im-

proving input, speed and memory of contemporary hardware has sup-

ported Licklider’s perspective a single limitation that he pointed out in the

1950s nonetheless remains: the problem of language.

What wewant to accomplish, and how dowewant to accomplish it, are

complex questions for a computer to process. The subtleties of language

imply some ambiguities which are not the preferred mode of working of a

logical arithmetic machine. If machines can help us think, there are how-

ever some aspects of that thinking which cannot cannot easily be trans-

lated in the computer’s native, formal terms, and the work of interface de-

signers and tool constructors has therefore attempted to automatemost of

what can be automated away, and faciltate the more mundane tasks done

223

a by a programmer. Software tools are therefore used to think and explore

concepts, by supporting epistemic actions in various modalities (Victor,

2014).

The computer therefore supports epistemic actions through its use of

metaphors (to establish a fundamental base of knowledge) and of actions

(to probe and refine the validity of those metaphors) to build a mental

model of the problem domain. In the case of IDEs, the problem domain

is the source code, and these interfaces, by allowing means of scanning

and navigating the source code, are part of what Simon Penny calls, after

Clark and Chalmers, extended cognition (Penny, 2019). Extended cognition

posits that our thinking happens not only in our brains, but is also located

in the tools we use to investigate reality and to deduce a conceptual model

of this reality based on empirical results. We consider IDEs a specificman-

ifestation of embodied cognition, actively helping the programmer to de-

fine, reason about, and explore a code base. Themeans of taking epistemic

action, then, are also factors in contributing to our understanding of the

program text at hand. In this spirit, David Rokeby goes as far as qualify-

ing the computer as a prosthetic organ for philosophy, insofar as it helps

him formulate accurate mental models as he interacts with them through

computer interfaces, compensating for its formal limitations32.

This brings us back to our discussion of Simondon’s technical and aes-

thetic modes of existence 3.2.1. As highlighted by the use of software tools

in the sense-makingprocess of a program text, formal syntaxonly operates

on distinct, fragmented concepts, as evoked in the technological mode33.

32” The fact that words can be stored andmanipulated by a computer does notmean that the

referenced concepts or material reality are held in the computer. We reinvigorate a computer’s

textual output with our mind’s wet and messy renderers. The computer is just holding on to

given patterns, sets of unambiguousmeasurements of key-strokes, mouse-clicks, modem songs,

sensor reading...” (Rokeby, 2003)
33Rokeby further develops on the computer’s fragmentation process, which he calls quan-

tification: ”The material world cannot enter into this digital nirvana except through that par-

ticular ”eye of the needle” called quantification, that most literal and unforgiving form of en-

224

In turn, the aesthetic mode, expressed through the more systemic and to-

talling approach of metaphors and of sensual perception, can compensate

this fragmenting process. This does suggest that the cognitive process of

understanding technical artifacts, such as source code, necessitates com-

plementary technical and aesthetic modes of perception.

Programmers face the complexity of software on a daily basis, and

therefore use specific cognitive tools to help them. While our overall ar-

gument here is that aesthetics is one of those cognitive tools, we focused

on this section on two different, yet widely used kinds: the metaphor and

the integrated development environment.

We pointed out the role that metaphors play in creating connections

between pre-existing knowledge and current knowledge, building connec-

tions between both in order to facilitate the construction ofmentalmodels

of the target domain. Metaphors are used by programmers at a different

level, helping themgrasp concepts (e.g. memory, objects, package) without

having to bother with details. As we will see in the following chapters (see

4.2.1 and 5.2.2), metaphors are also used by programmers in the source code

they write in order to elicit this ease of comprehension for their readers.

Programmers also rely on specific software tools, in order to facilitate

the scanning and exploring of source code files, while running mundane

tasks which should not require particular programmer attention, such as

linking or refactoring. The use of software to understand software is in-

deed paradoxical, but nonetheless participates in extended cognition; the

means which we use to reason about problems affect, to a certain extent,

the quality of this reasoning.

coding.” (Rokeby, 2003)

225

Code is therefore technical and social, andmaterial and symbolic

simultaneously. Rather, code needs to be approached in its mul-

tiplicity, that is, as a literature, a mechanism, a spatial form (or-

ganization), and as a repository of social norms, values, patterns

and processes. (Berry, 2011)

This chapter has shown that software is a complex object, an abstract

artifact, existing at multiple levels, and in multiple dimensions. Program-

mers therefore need to deal with this complexity and deploymultiple tech-

niques to do so. Psychology studies, investigatinghowprogrammers think,

have pointed out several interesting findings. First, building mental mod-

els from reading and understanding source code is not an activity which

relies exclusively on the part of the brain which reads natural language,

nor on the part which does mathematical operations. Second, the reason-

ing style is multimodal, yet spatial, involving layered abstractionsl; pro-

grammers report working and thinking at multiple levels of scale, repre-

sent parts of code as existing closer or further from one another, in non-

linear space. Third, the form affects the content. That is, the way that code

is spatially and typographically laid out helps, to a certain, with the under-

standing of said code, without affecting expertise levels, or guaranteeing

success.

In order to deal with this complexity, some of the means deployed to

understand and grasp computers and computational processes are both

linguistic and technical. Linguistic, because computer usage is riddled

with metaphors which facilitate the grasping of what the presented en-

tities are and do. These metaphors do not only focus on the end-users, but

are also used by programmers themselves. Technical, because the writing

and reading of code has relied historicallymore andmore on tools, such as

programming languages and IDEs, which allows programmers to perform

seamless tasks specific to source code.

In the next chapter, we pursue our inquiry of the means of understand-

226

ing, moving away from software, and focusing on how the aesthetic do-

mains examined in 2.2. This will allow us to show how source code aes-

thetics, as highlighted by the metaphorical domains that refer to it, have

the function of making program texts understandable.

227

Chapter 4

Beauty and understanding

This chapter provides background argumentation for what beauty has to

do with understanding. First from a theoretical perspective, and then div-

ing specifically into how specific domains approach this relation. Our the-

oretical approach will be start from the aesthetic theory of Nelson Good-

man, and a lineagewhich links aesthetics to cognition,most recently aided

by the contribution of neurosciences. We will see how source codes does

qualify as a language of art—that is, a symbol systemwhich allows for aes-

thetic experiences.

After argumenting for a conception of aesthetics which tends to in-

tellectual engagement, we will pay attention to how surface structure

and conceptual assemblages relate. That is, we will highlight how each

of the domains contigent to source code— literature, mathematics and

architecture—communicate certain concepts through their respective and

specific means of symbolic representation. The identification of how spe-

cific aesthetic properties enable cognitive engagement in each of these do-

mains will in turn support the identification of how equivalent properties

can manifest in source code.

This thesis argues that aesthetics have a useful component, insofar as

formal arrangments at the surface-level can facilitate the understanding of

228

the underlying deep structure of concepts denotated. In the specific con-

text of source code, we show that aesthetic standards are contextual, as

they vary along two axes. First, they depend on whether the attention of

the writer (and thus the reader) is directed at the hardware, or at the soft-

ware (which can, in turn, address real-world ideas, or computational ideas).

Second, they depend on the socio-technical context in which source code

is written, a context constituted of whether the program text is read-only

or read-write, and of whether the intent is for the program text to be pri-

marily functional, educational or entertaining.

4.1 Aesthetics and cognition

The way that things are presented formally has been empirically shown to

affect the comprehension of content. Without engaging too directly in the

media-determination thesis, which states that what one can say is deter-

mined by the medium through which they say it, be it language or tech-

nical media (Postman, 1985), we nonetheless do start from the point that

form influences the perception of content.

Jack Goody and Walter Ong have shown in their anthropological stud-

ies that the primary means of communication of the surveyed communi-

ties does affect the engagement of said communities with concepts such

as ownership, history and governance (Ong, 2012; Goody, 1986). More re-

cently, Edward Tufte and his work on data visualization have furthered

this line of research by focusing on the translation of similar data from

textual medium to graphic medium (Tufte, 2001). Several cases have thus

beenmade for the impact of appearance towards structure, both in source

code and elsewhere. Here, we intend to generalize this comparative ap-

proach between severalmediums, by looking at how source code performs

expressively as a language of art, stemming from Nelson Goodman’s theo-

rization of such a languages.

229

4.1.1 Source code as a language of art

Moving away from the question of the nature of the aesthetic experience

from the perspective of the audience, whether as an aesthetic emotion be-

ing felt or as an aesthetic judgment being given, we shift our attention to

the object of aesthetic experience, and to the questions of how does a pro-

gram text represent? and what does a program text represent?. To answer

these, we rely on the approaches provided by Nelson Goodman in the Lan-

guages of Art: An Approach to a Theory of Symbols (Goodman, 1976).

The starting point for Goodman’s analysis is that production and un-

derstanding in the arts involve human activities that, though they differ in

specific ways among themselves and from other activities, are neverthe-

less generically related to perception, scientific inquiry, and other cogni-

tive activities, since both artistic and scientific activities involve symbolic

systems. It is those two components that Goodman aims at expliciting:

what constitutes an aesthetic symbol system, and how does such a system

express?

Goodman develops a systematic approach to symbols in art, freed from

any media-specificity (e.g. f from clocks to counters, from diagrams to

maps models, from musical scores to painters’ sketches and linguistic

scripts). A symbolic system, in his definition, consists of characters, along

with rules to govern their combination with other characters, itself cor-

related with a field of reference. These symbols and their arrangement

within a work of art supports an aesthetic experience1 and, since they are

syntactic systemwhich operate at the semantic level, they can be rigorous

communicative systems.

A symbol system is based on requirements which might indicate that

the work created in such a system would be able to elicit an aesthetic ex-

1It should be noted here that Goodman does not limit the aesthetic experience to a posi-

tive, pleasurable one. An artistic symbolic system can be seen even if the result is considered

bad.

230

perience2. Such a system should be composed of signs which are syntac-

tically and semantically disjointed, syntactically replete and semantically

dense (Goodman, 1976). This classification makes it possible to compare

theway various symbolization systems used in art and sience express con-

cepts. In our case, this provides us for a framework to investigate the ex-

tent to which source code qualifies as a language of art.

Source code is written in a formal linguistic system called a program-

ming language. Such a linguistic system is digital in nature, and there-

fore satisfies at least the two requirements of syntactic disjointedness (no

mark can be mistaken for another) and differentiation (a mark only ever

corresponds to that symbol). Indeed, this is due to the fact that these re-

quirements are fulfilled by any numerical or alphabetical system, as pro-

gramming languages are systems inwhich alphabetical characters are ulti-

mately translated into numbers. While not as syntactically dense asmusic

or paint, it is nonetheless unambiguous.

Third, the requirement of syntactic repleteness demands that relatively

fewer factors need to be taken into account during the interpretative pro-

cess3. On one hand, we can consider that any additional aspects of the

source code (such as the display font or the syntax highlighting discussed

in 3.3.2) are ultimate irrelevant to the computer, thus making it a poorly

replete symbol sytem. On the other hand, the importance of such factors,

along with abilities to write a program with the same function but with

different syntax, pleads for a relatively replete syntactical system. The ten-

dency of program text to veer towards verbosity indeed implies this desir-

2Goodman approaches it as such: ”Perhaps we should being by examining the aesthetic

relevance of the major characteristics of the several symbol processes involved in experience,

and look for aspects or symptoms, rather than for crisp criterion of the aesthetic. A symptom

is neither a necessary nor a sufficient condition for, but merely tends in conjunction with other

such symptoms to be present in, aesthetic experience” (Goodman, 1976)
3Goodman mentions the symptom that such a system might engender: ”[…] relative syn-

tactic repleteness in a syntactically dense system demands such effort at discrimination along,

so to speak, more dimensions” (Goodman, 1976)

231

able state of repleteness: more subtleties and intermediate syntax can be

addedwithin anyproposition, always implying thepossibility of clarifying,

or obfuscating—both being, as we have seen, different kinds of aesthetic

experiences.

Finally, semantic density refers to whether or not there is a limit to the

amount of concepts that the symbol systemcan refer to. Aswehave shown

in 45, the affordances that programming languages provide to represent

phenomena and concepts from the problem domain fulfill this require-

ment. While we have been previously concerned with syntax, this ability

of programming languages to refer to a problem domainwhich has not yet

shown its limitations at the semantic level is one which gives it represen-

tational power beyond strict computational concepts.

As Goodman notes, the distinct signs that compose a symbols system

do not have intrinsic properties, but amark serves as a sign only in relation

to a symbol system, and to a field of reference. The field of reference is un-

derstood here as being the set of concepts which are being referred to by

a symbolic system. For instance, a symbolic system such as western clas-

sical music can refer to concepts such as lament, piety, heroism or grace,

while a chinese shanshuipainting has a landscape composed ofmountains

and rivers, as well as concepts of harmony, complementarity, presence and

absence, as its field of reference. The combination of both the problem do-

main, as evoked in 3.2.2, and of the technological environment on which

the source code is to be executed, developed in 5.1.3, are posited here as an

equivalent to the Goodman’s field of reference.

It thus seems like source code satisfies to a large extent the critieria to

be a language of art, meaning that it exhibits some of the properties which

tend to elicit an aesthetic feeling. Most notably, it does not possess a very

dense syntax, nor can it be considered replete both from the perspective

of the computer and of the human4, but it nonetheless refers possesses a

4See 5.1.1 for a discussion of syntactic limitation in programming languages, also known

as orthogonality.

232

certain amount of semantic density. Its ability to connect to a particular

field of reference, such as hardware, mathematics, or the world at large is

another aspect of being a language of art, and is an important part of how

programming languages can communicate concepts.

Goodmanhighlights theways inwhich symbols systems communicate,

through the notion of reference. To refer to, in this sense, is the action by

which a symbol stands in for an item or an idea. Reference, he sketches

out, takes place through the different dyads of denotation and exemplifi-

cation, description and representation, possession and expression (Good-

man, 1976). We will see how these various means of referring can be in-

stantiated in the symbolic system of source code.

Denotation is the core of representation, a reference from a symbol to

one ormany objects it applies to and is independent of resemblance. To re-

fer, it uses a particular relationship via the use of labels, in which a symbol

stands in for an item in the field of reference. For instance, a name denotes

its bearer and a predicate each object in its extension. Names such as vari-

able names or function names thus denote a particular item in the field

of reference, and act as their label. For instance, var auth_level denotes

an ability to access and modify resources; the first token var is chosen by

the language designer, while the second token auth_level is chosen by the

programmer.

The labelling process therefore serves as the symbolic expression for a

particular field. In source code, this can happen through variable naming,

but also through type definition5, as well as additional affordances which

we look at in 5.2, such as the layering of semantic references and the estab-

lishment of habitable cognitive structures.

Source code also make extensive use of description. If we consider a

program text as a series of steps, a series of states, or a series of instruc-

tions, then it follows that source code is explicitly describing the algorithm

5For instance, a particular choice of a numeric value, such as int or float denote a par-

ticular level of preciseness

233

class Person {
int age;
String name;
Interest[] interests;

void greet(){
System.out.println(”hi, my name is ”+name+”!”)

}
}

class Interest {
int priority;
String name;

}

Listing 45: An example of how source code can be a representation an in-

dividual, and can exemplify encapsulation, written in Java.

used—thehowof the program, rather than thewhy. Indeed, a program text

is a description of how to solve a problem from the computer’s perspective,

written extensively inmachine language6. All source code can therefore be

said to be a description of a combination of states (data) and actions (func-

tionality).

States are also a particular case in source code: they are both a descrip-

tion and, because they are not the thing itself, they are also a representa-

tion. As one can see in 45, an individual can be represented within source

code with a particular construct in which states and actions are encapsu-

lated. Interestingly, this representation of a concept as an object in soure

code does not imply that it reveals the intrinsic properties of the object;

rather, these properties appear as they are given by the modelling process

of source code syntax. As a symbol system, source code thus proposes a

model of the world in which objects have properties; a slightly different

representation is therefore always possible.

This representation, in the specific instance of object-oriented pro-

gramming in 45, also manifests Goodman’s aesthetic symptom of posses-

6Pseudo-code is therefore a representation of a potential source code written in a specific

language.

234

sion. Here, the source code posseses similar properties as the thing ref-

erenced (since our prototypal image of a person has an age, a name and

interests). Through this possession of a property, it acts as an example of

a prototypal person.

Exemplification is another aspect of Goodman’s theory, which has

nonetheless remained somewhat limited (Elgin, 2011). A symbol exempli-

fying, also called an examplar, is considered as a stand-in for an item in

the field of reference. We have seen source code act as an example in 2.1.3,

where a particular program text is written in order to stand in for a broader

concept. For instance, a program text can, at a lower level, exemplify a par-

ticular kind of procedure, such as encapsulation (see 45) or nestedness. The

program text therefore exemplifies the constitutive element of the linked

list7. However, a similar program text can also be an example of cleanli-

ness, of clarity, or elegance. A program text written by a software devel-

oper can be seen as possessing the property of cleanliness (see 28 in 2.2.2),

by virtue of its implementation of syntactic and semantic rules, while an-

other program textwritten by a hacker can be seen as highlighting detailed

hardware knowledge s(ee 30 in 2.2.2).

Different implementations of a concept are necessary but not sufficient

for aesthetic judgment, whether these different implementations are vir-

tual or actual. The comparative approach is the one which enables the

labelling of good or bad only insofar as there is a relative worse or better,

respectively. Additionally, the features which a symbol exemplifies always

depend on its function (or, more precisely, its functional context) (Elgin,

1993). As we show in 5.3.2, a symbol can perform a variety of functions: a

piece of code in a textbook might exemplify an algorithm, while the same

piece of code in production software might be seen as a liability, or de-

note boredom in a code poem. It is then both the possibility of alternative

implementations and the reality of the current implementation context

7A linked list is a basic data structure in computer science, which consists in a succession

of connected objects.

235

which give the exemplification of program texts its aesthetic potential.

Source code maintains a specific kind of relation to the field of refer-

ence. The particular class of characters employed as symbols (called to-

kens in the context of programming languages), involves a separation be-

tween name, value and address, and as such does not guarantee a direct

relationship with the items in the field of reference, we can see in the line

unsigned three = 1; of 46, where the reference of the name is not the same

reference as the value. That is, in program texts, two distinct symbols can

be referring to the same concept, value, or place in memory, something

Goodman nonetheless assigns as another symptom of the aesthetic: mul-

tiple and complex references.

On the other hand, the representation of a field of reference is done

through a disjointed and differentiated system: the boundaries of each

items in the field of reference are clearly defined, in virtue of the specific

symbol system that programming languages are. It is their combination

which, in turn, enables complex interplay of references.

We have shown here that source code qualifies as a symbolic system

susceptible of affording symptoms of the aesthetic. We have also high-

lighted its specificities, particularly in terms of descriptions and represen-

tations through a restricted syntactic system enabling complex and mul-

tiple references, due to it being a language across human andmachine un-

derstanding. Source code is thus written in a specific kind of symbol sys-

tem, one which counts as a language of art, but does with restricted syntax

and expansive semantics.

A final aspect to investigate is the expressiveness of source code, with

a particular attention to how source code can manifest of metaphorical

exemplification and representation. One particular expressive power of an

aesthetic experience surfaces when the examplification involves a foreign

element, an event thatGoodman refers to asmetaphorical exemplification.

While this approach has been broadened by Lakoff et. al., and mentioned

in 3.3.1, other philosophers of art have also pinpointed the metaphorical

236

static int verify_reserved_gdb(struct super_block *sb,
ext4_group_t end,
struct buffer_head *primary)

{
const ext4_fsblk_t blk = primary->b_blocknr;
unsigned three = 1;
unsigned five = 5;
unsigned seven = 7;
unsigned grp;
__le32 *p = (__le32 *)primary->b_data;
int gdbackups = 0;

while ((grp = ext4_list_backups(sb, &three, &five, &seven)) < end)
{

if (le32_to_cpu(*p++) !=
grp * EXT4_BLOCKS_PER_GROUP(sb) + blk)

{
ext4_warning(sb, ”reserved GDT %llu”

” missing grp %d (%llu)”,
blk, grp,
grp *
(ext4_fsblk_t)EXT4_BLOCKS_PER_GROUP(s ⌋

b)
+

↪→

↪→

blk);
return -EINVAL;

}

if (++gdbackups > EXT4_ADDR_PER_BLOCK(sb))
return -EFBIG;

}
return gdbackups;

}

Listing 46: An example from the Linux kernel showing that the name and

the value of a variable might refer to different things (Linux, 2023).

237

event as a reliable symptom of the aesthetic.

MaxBlack initiates a viewofmetaphorswhich gobeyond a simple com-

parison; dubbed the interaction view, he considers themetaphorical device

as containing positive cognitive content, rather than simply entertaining

or limiting (Black, 1955). Against a traditional view of metaphor being a

word which stands in for another, Black reveals a large web of interactions

which prove harder to disentangle, beyond usual similarities between two

words8. Simply paraphrasing a metaphor, even if one captures precisely

the same connotations/associations as the metaphor, does not convey the

samemeaning as the metaphor itself. For instance, saying ”Je chavire dans

l’embrun des phénomènes”9 (Beckett, 1982) does not have the similar ex-

pressive power as listing all the properties of phénomènes. The use of the

verb capsize in conjunction with spray relates to the domain of naviga-

tion, while capsize alone tends more to a dynamic movement, and spray

to uncertainty and bluriness of shape. Phenomenas of the world are all

requalified in the light of these new kinetic and perceptual associations.

Through his contribution to aesthetic philosophy, Monroe Beardsley’s

started touching upon metaphor from a semantic perspective. Published

alongside his inquiries into the aesthetic character of an experience, The

Metaphorical Twist implies that semantics and aesthetics might be con-

nected through the structuring operation of the metaphor—that which

elicits an aesthetic experience can do so through the creation of unex-

pected, or previously unattainablemeaning. Beardsley’s conception is that

metaphor can have a designative role (the primary subject) which adds a

8”Reference to ’associated commonplaces’ will fit the commonest cases where the author

simply plays upon the stock of common knowledge (and common misinformation) presumably

shared by the reader and himself. But in a poem, or a piece of sustained prose, the writer can

establish a novel pattern of implications for the literal uses of the key expressions, prior to using

them as vehicles for his metaphors. […] Metaphors can be supported by specially constructed

systems of implications, as well as by accepted commonplaces; they can be made to measure

and need not be reach-me-downs.” (Black, 1955).
9Literally translated as ”I capsize in the spray of phenomena”

238

”local texture of irrelevance”, a ”foreign component”, whose semantic rich-

ness might over-reach and obfuscate the intended meaning, as well as a

connotative one (the secondary subject), in which meaning is peripheral

(Beardsley, 1962). The cognitive stimulation and enlightment takes place

through a metaphor-induced tension, between central and periphery, be-

tween illuminating and obfuscating, between evidence and irrelevance.

As Beardsley inquiries into the features necessary for an aesthetic expe-

rience, ofwhich themetaphor is part, he lists five criteria to distinguish the

character of such an experience. Besides object-directedness, felt-freedom,

detached-affect and wholeness, is the criteria of active discovery, which is

a sense of actively exercising the constructive powers of themind,

of being challenged by a variety of potentially conflicting stimuli

to try and make them cohere; exhilaration in seeing connections

between percepts and meanings; a sense of intelligibility (Beard-

sley, 1970).

As such, Beardsley highlights the possibility of an aesthetic experience

tomake understandable, to unlock new knowledge in the beholder, and he

considers metaphors as a way to do so. The stages he lists go from (1) the

word exhibiting properties, to (2) those properties being made into mean-

ing, and finally into (3) a staple of the object, consolidating into (or dying

from becoming) a commonplace. This interplay of a metaphor being inte-

grated into our everyday mental structures, of poetry bringing forth into

the thinkable, and in the creation of a tension for such bringing-forth to

happen, makes the case for at least one of the consequences of an aes-

thetic experience, and therefore one of its functions: making sense of the

complex concepts of world.

Finally, Catherine Elgin has pursued the work of Goodman by further-

ing the inquiry into arts as a branch of epistemology. Drawing on the work

mentioned above, she investigates the relationship between art and under-

standing, considering how interpretively indeterminate symbols advance

239

understanding (Elgin, 2020), and that it does so in the context of interpre-

tive indeterminacy. As syntactically and semantically dense symbol sys-

tems are used in artworks, it is this multiplicity in interpretations which

requires sustained cognitive attention with the artwork. To explain these

multiple interpretations, the metaphor is again presented the key device

in explaining the epistemic potency of aesthetics, based on an interpreta-

tive feedback loop from the viewer. And yet, in the context of source code,

this interpretation is always shadowed by its machine counterpart—how

the computer interprets the program.

4.1.2 Contemporary approaches to art and cognition

Wehave drawn fromexistingwork in philosophyof art, in order tomapout

the expressive power of a given formal representation, as a traditional pre-

requisite to the gainingof art status of anobject, andhighlighted the role of

metaphors in engaged cognition during an aesthetic experience. Contem-

porary literature, and the emergence of neuroscientific studies of such aes-

thetic experience seem to confirmempirically this approach, andhighlight

aswell two related additional components: sequential experience and skill

levels.

The aesthetic experience—that is, the positively received perception of

a natural or crafted object—has traditionally been laid out across multi-

ple axes, with more or less overlap. The axes involved in this positive per-

ception include an emotional response, a harmonious assessment, an ax-

iomatic adherence or disinterested pleasure, and have been the topic of

debates amongst philosophers for centuries (Peacocke, 2023).

Noël Carroll sums up these different directions under the broad areas

of affect, axiom and content ultimately considering a content-based ap-

proach as the most fruitful (Carroll, 2002). First, he underlines how an

aesthetic experience dictated by affect removes the object from one’s as-

sessment of purpose, value and effect, and limiting it to form, following

240

Kant’s principle of disinterested pleasure via passive contemplation. As

such, a flower, a sunset or a musical melody can evoke affective aesthetic

experiences. Yet, the supposed tendency of this kind of experience to re-

lease us from worldly concerns fails, for Carroll, to encompass aesthetic

experiences that are rooted in so-calledworldly concerns—such as a docu-

mentary photography, skillful physical performance, or delicatedly crafted

glassware—and is therefore unsatisfying as a root explanation for the aes-

thetic experience.

An axiomatic aesthetic experience is based on the sort of value that the

object is being associated with—such as depiction of religious topics or

a manifestation of a particular style. While Carroll does acknowledge a

certain virtue of this aesthetic experience in termsof contribution to group

cohesion through shared values and imaginaries, its limitations are found

in a pre-existing answer to the value judgment that is being bestowedupon

the object: the material and sensual properties of the object at hand are

irrelevant since their quality is already decided a priori.

It is in the content approach that Carroll finds the most satisfying an-

swer to what the aesthetic experience is. Content, here, is defined as the

significant forms being apprehended, along with its combinations, juxta-

positions and comparisons with other forms10. When we engage with the

sensual aspects or an object, our attention is indeed directed first and fore-

most at what the object looks like, rather than how it makes one feel, or

what value system it belongs to. More specifically, Carroll notes, if at-

tention is directed with understanding to the form of the art work or to

its expressive and aesthetic properties or to the interaction between those

features, then the experience is said to be aesthetic (Carroll, 2002).

Form, and the attention paid to it, will thus be taken as our starting

10”Whereas affect-oriented approaches tend to identify aesthetic experience in terms of cer-

tain distinctive experiential qualia or feeling tones, such as being lifted out of the flow of life,

content-oriented approaches proceed by distinguishing the specific objects of said experiences.”

(Carroll, 2002).

241

point. This content approach to form, i.e. the set of appearing choices in-

tended to realize the purpose of the artwork, also involves questions of

function, implied by the presence of purpose pertaining to an artwork.

Particulary, how does the object of aesthetic experience manifest such a

purpose, in a way that it can be correctly judged, insofar as its perceived

form and perceived purpose are aligned, distinct from any emotional or

axiomatic charge?

We can find an answer in the study conducted by Anjan Chatterjee and

Oshin Vartanian on the evaluation of the aesthetic experience from a neu-

roscientific point of view. Like Carroll, they highlight three different per-

spectives: a sensory-motor perspective, loosely mapped to an affective ex-

perience, an emotion-valuation perspective, similar to an axiological expe-

rience, and ameaning-knowledge experience, which we equate to the con-

tent approach to the aesthetic experience (Chatterjee & Vartanian, 2016).

Importantly, theymake the distinction between an aesthetic judgment,

which emanates from the process of understanding the work, and an aes-

thetic emotion, which follows from the ease of acquisition of such an un-

derstanding. Without being mutually exclusive, these two pendants are

related to the amount of engagement provided by the person who aesthet-

ically experiences the object. One can have an aesthetic emotion without

being able to provide an aesthetic judgment, a case in which one does not

hold enough expertise to apprehend or appreciate a particular realisation.

In this sense, the aesthetic judgment, unlike the aesthetic emotion, re-

quires something additional. This conditioning of the aesthetic experience

to a certain kind of pre-existing knowledge or skill is supported by the au-

thors’ mention of the theory of fluency-based aesthetics (Chatterjee & Var-

tanian, 2016), and their view builds on models that frame aesthetic expe-

riences as the products of sequential and distinct information-processing

stages, each of which isolates and analyzes a specific component of a stim-

ulus (e.g., artwork).

These stages, drawn from Leder et. al’s model, are based on empirical

242

observation in scientific studies which segment an aesthetic experience in

sequential steps (Leder et al., 2004). These evolve form perception, to im-

plicit classification, explicit classification, cognitive mastering and fianlly

evaluation—that is, fully-qualified aesthetic judgment. This conception is

concomittant to Rebert et. al.’s proposal for an aesthetic framework based

on processing fluency, which they define as a function of the perceiver’s

processing dynamics: the more fluently the perceiver can process an ob-

ject, the more positive is her aesthetic response (Reber et al., 2004). While

they focus their study on perceptual fluency, tending to traditional aes-

thetic features such as symmetry, contrast and balance; they also consider

conceptual fluency as an influence on the aesthetic experience, through

the attention given to the meaning of a stimulus and the relation of form

to semantic knowledge structures. Such a conceptualizing thus hints at a

similar skill-based, contextual framework which we have seen emerge in

the aesthetic judgment of source code, and yet an additional establishment

of a relation between truth and beauty11.

This approach of cognitive ease, which we’ve already identified in the

conclusion of 2, is finally echoed in the view that Gregory Chaitin, a com-

puter scientist and mathematician, offers of comprehension as compres-

sion. By considering that the understanding of a topic is correlated with

the lower cognitive burden experienced when reasoning about such topic,

Chaitin forms a view in which an individual understands better through

a properly tuned model—a model that can explain more with less (Zenil,

2021). In this sense, aesthetics help compress concepts, which in turn al-

lows someone told holdmore of these concepts in short-termmemory, and

grasp a fuller picture, so to speak.

These studies thus show a particular empirical attention to the cogni-

11”these findings suggest that judgments of beauty and intuitive judgments of truth may

share a common underlying mechanism. Although human reason conceptually separates

beauty and truth, the very same experience of processing fluency may serve as a nonanalytic

basis for both judgments.” (Reber et al., 2004)

243

tive engagement with respect to the apprehension an object from an aes-

thetic perspective, as opposed to passive contemplation or value-driven

aggreement. While these other types of experiences remain valid when

apprehending such an object, we do focus here on this specific kind of ex-

perience: the cognitive approach to the aesthetic experience. Going back

to Goodman, he describes such an experience as involving:

making delicated discriminations and discerning subtle relation-

ships, identifying symbol systems and what these characters

denote and exemplify, interpreting works and reorganizing the

world in terms of works of art and works in terms of the world.

(Goodman, 1976)

In this section we’ve glanced at an overview of research on how cogni-

tive engagement is involved in an aesthetic experience, both from thepoint

of view of the philosophy of art and from cognitive psychology. However,

highlighting this involvment does not immediately explicit the nature and

details of such cognitive engagement. Speaking in terms of form and ob-

ject are higher-level concepts tend to erase the specificities of the various

systems of aesthetic properties, and how their arrangement expresses var-

ious concepts.

Now that we have sketched out an understanding of source code as a

symbolic system supporting an aesthetic experience, we must provide a

more detailed account of the specificities of source code. To do so, we first

turn to a comparative approach, looking at the set of aesthetic domains

metaphorically connected to source code through programmer discourse,

and we analyse how each of these domains involve cognition in their for-

mal presentations.

244

4.2 Literature and understanding

Literature as a cognitive device relies, as we’ve seen in 2.2, on the use of

metaphors to provide a new perspective on a familiar concept, and hence

complement and enrich the understanding that one has of it. While Lakoff

and Johnson’s approach to the conceptual metaphor will serve a basis to

explore metaphors in the broad sense across software and narrative, we

also argue that Ricoeur’s focus on the tension of the statement rather than

primarily on thewordwill help us better understand some of the aesthetic

manifestations of software metaphors, without being limited to tokens,

but going beyond to statement and structure. Following a brief overview

of his contribution, we examine the various uses of metaphor in software

and in literature, touch upon the cognitive turn in literary studies, and con-

clude with an account of how this turn involves further thinking into the

spatial and temporal properties of the written word.

4.2.1 Literarymetaphors

Writing in The Rule of Metaphor, Ricoeur operates two shifts which will

help us better assess not just the inherent complexity of program texts,

but the ambivalence of programming languages as well. His first shift re-

gards the locus of themetaphor, whichhe sawas being limited to the single

word—a semiotic element—to the whole sentence—a semantic element

(Ricoeur, 2003). This operates in parallel with his attention to the lived

feature of the metaphor, insofar it exists in a broader, vital, experienced

context. Approaching the metaphor while limiting it to words is counter-

productive becausewords refer back to ”contextuallymissing parts”—they

are eminently overdetermined, polysemic, and belong to a wider network

meaning than a single, Aristotelician, one-to-one relationship. Looking at

it from the perspective of the sentence brings this rich network of poten-

tial meanings and broadens the scope for and the depth of interpretation.

245

As we develop in 5.2.2 in our reading of 74, not all of the evocative meaning

of the poem are contained exclusively in each token, and the power of the

whole is greater than the sum of its parts.

Secondly, Ricoeur inspects a defining aspect of a metaphor by the ten-

sions it creates. His analysis builds from the polarities he identifies in

discourse between event (time-bound) and meaning (timeless), between

individual (subjective, located) and universal (applicable to all) and be-

tween sense (definite) and reference (indefinite). The creative power of the

metaphor is its ability to both create and resolve these tensions, to main-

tain a balance between a literal interpretation, and a metaphorical one—

between the immediate and the potential, so to speak. Tying it to the need

for language to be fully realized in the lived experience, he posesmetaphor

as ameans to creatively redescribe reality. In the context of syntax and se-

mantics in programming languages, we will see that these tensions can

be a fertile ground for poetic creation through aesthetic manifestations.

For instance, we can see in 47 a poetic metaphor hinging on the concept

of the attribute. In programming as in reality, an attribute is a specificity

possessed by an entity; in this code poem, the tension is established be-

tween the computer interpretation and the human interpretation of an at-

tribute. Starting from a political target domain (the constitution of the

United States of America), the twist happens in the source domain of the

attribute. Loosely attributed by the people in writing, the execution of the

declaration (that is, the living together of the United States citizens) im-

plies and relies on the fact that power resides in the people, as is being

stated in a literal way. However, from the computer perspective, the defi-

nition is not rigorous enough and the execution of the code will throw an

error that is shown on the last line—the people have no power.

In such case, the expressiveness of the program text can be said to de-

rive from the continuous threading of metaphorical references, weaving

the properties of computational objects and the properties of conceptual

objects in order to deep the mapping from one unto the other.

246

title = 'Constitution of the United States'

preamble = { 'Preamble': ”We the People of the United States, \
in Order to form a more perfect Union, \
establish Justice, insure domestic Tranquility, \
provide for the common defense, promote the general Welfare, \
and secure the Blessings of Liberty to ourselves and our Posterity, \
do ordain and establish this Constitution for the United States of

America.” }↪→

WEPOTUS_power = { 'ordain_and_establish' : lambda x, y :
Constitution(x, y)}↪→

WEPOTUS = People(”We the People of the United States”, WEPOTUS_power)

WEPOTUS.GOALS = [”form a more perfect Union”,
”establish Justice”,
”insure domestic Tranquility”,
”provide for the common defense”,
”promote the general Welfare”,
”secure the Blessings of Libery to ourselves and our Posterity”
]

USConstitution = WEPOTUS.power['ordain_and_establish'](title,
preamble)↪→

AttributeError: 'People' object has no attribute 'power'

Listing 47: Cynical American Preamble, by Michael Carlisle, published in

code::art #0 (Brand, 2019)

247

So while Lakoff bases poetic metaphors on the broader metaphors of

the everyday life, he also operates the distinction that, contrary to con-

ventional metaphors which are so widely accepted that they go unno-

ticed, the poetic metaphor is non-obvious. Which is not to say that it

is convoluted, but rather that it is new, unexpected, that it brings some-

thing previously not thought of into the company of broad, conventional

metaphors—concepts we can all relate to because of the conceptual struc-

tures we are already carry with us, or are able to easily integrate.

Poetic metaphors deploy their expressive powers along four different

axes, in terms of how the source domain affects the target domain that is

connected to. First, a source domain can extend its target counterpart: it

pushes it in an already expected direction, but does so even further, some-

times creating a dramatic effect by this movement from conventional to

poetic. For instance, a conventional metaphor would be saying that ”Juliet

is radiant”, while a poetic one might extend the attribution of positivity

and dramatic important associated with brightness and daylight by say-

ing ”Juliet is the sun12.

Poeticmetaphors can also elaborate, by addingmore dimensions to the

target domain, while nonetheless being related to its original dimension.

Here, dimensions are themselves categories within which the target do-

main usually falls (e.g. the sun has an astral dimension, and a sensual di-

mension). Naming oneself as The Sun-King brings forth the additional di-

mension of hierarchy, alongwith a specific role within that hierarchy—the

sun being at the center of the then-known universe.

Metaphors gain poetic value when they put into question the con-

ventional approaches of reasoning about, and with, a certain target do-

main. Here is perhaps the most obvious manifestation of the non-obvious

requirement, since it quite literally proposes something that is unex-

pected from a conventional standpoint. When Albert Camus describes

12From Romeo and Juliet, Act 2, Scene 2

248

Tipasa’s countryside as being blackened from the sun13, it subverts our pre-

conceptions about what the countryside is, what the sun does, and hints

at a semantic depth which would go on to support a whole philosophical

thought, knowns as la pensée de midi, or the noon-thought14.

Finally, poetic metaphors composemultiple metaphors into one, draw-

ing from different source domains in order to extend, elaborate, or ques-

tion the original understanding of the target domain. Such a tech-

nique of superimposition creates semantic depth by layering these dif-

ferent approaches. It is particularly at this point that literary criticism

and hermeneutics appear to be necessary to expose some of the threads

pointed out by this process. As an example, the symbol of Charles Bovary’s

cap, a drawn-outmetaphor in Flaubert’sMadameBovary ends up depicting

something which clearly is less of a garment and more of an absurd struc-

ture, operates by extending the literal understanding of how a cap is con-

structed, elaborating on the different components of a hat in such a rich

and lush manner that it leads the reader to question whether we are still

talking about a hat (Nabokov, 1980). This metaphorical composition can

be interpreted as standing for the orientalist stance which Flaubert takes

vis-à-vis his protagonists, or for the absurdity of material pursuit and or-

nament, one which ultimately leads the novel’s main character, Emma, to

her demise, or for the novel itself, whose structure is composed of complex

layers, under the guise of banal appearances. Composed metaphors high-

light how they exist along degrees of meanings, from the conventional and

expected to the poetic and enlightening.

We have therefore highlighted how metaphors function, and how they

13”A certaines heures, la campagne est noire de soleil.” (Camus, 1972)
14Interestingly, the re-edition of L’Étranger for its 70th anniversary can itself be seen as

a form of poetic metaphor, since it was published under Gallimard’s Futuropolis collection.

While the actual Futuropolis doesn’t claim to focus on any sort of science-fiction publications,

and rather on illustrations, the very name of the collection applies onto the work of Camus,

and of the others published alongside him, can elicit in the reader a sense of a kind of avant-

gardism that is still present today.

249

can be identified. Another issue they address is that of the role they ful-

fill in our everyday experiences as well as in our aesthetic experiences.

Granted a propensity to structure, to adapt, to reason and to induce value

judgment, metaphors can ultimately be seen as a means to comprehend

the world. By importing structure from the source domain, the metaphor

in turn creates cognitive structure in the target domains which compose

our lives. Our understanding grasps these structures through their fea-

tures and attributes, and integrates them as a given, a reified convention—

in what Ricoeur would call a deadmetaphor. This is one of their key con-

tribution: metaphors have a functionwhich goes beyond an exclusive, dis-

interested, self-referential, artistic role. If metaphors are ornament, it is

far from being a crime, because these are ornaments which, in combining

imagination and truth, expand our conceptions of the world by making

things fit in new ways.

4.2.2 Literature and cognitive structures

Building on the focus on conceptual structures hinted at bymetaphors, the

attention of more recent work has shifted to the relationship between lit-

erature (as part of aesthetic work and eliciting aesthetic experiences) and

cognition. This move starts from the limitation of explaining ”art for art’s

sake”, and inscribing it into the real, lived experiences of everyday lifemen-

tioned above, perhaps best illustrated by the question posed in Jean-Marie

Schaeffer’s eponymous work—Why fiction? (Schaeffer, 1999). Indeed, if lit-

erary and aesthetic criticism are to be rooted in the everyday, and in the

conventional conceptual metaphors which structure our lives, our brains

seem to be the lowest commondenominator in our comprehension of both

real facts and literary works (Lavocat, 2015).

This echoes our discussion in 3.1.2 of Polanyi’s work on tacit knowledge,

in which the scientist’s knowledge is not wholly and absolutely formal and

abstracted, but rather embodied, implicit, experiential. This limitation of

250

codified, rigorous language when it comes to communicating knowledge,

opens up the door for an investigation of how literature and art can help

with this communication, while keeping in mind the essential role of the

senses and lived experience in knowledge acquisition (i.e. integration of

new conceptual structures) (Polanyi & Sen, 2009).

Some of the cognitive benefits of art (pleasure, emotion, or understand-

ing) are not too dis-similar to those posed by Beardsley above, but shift

their rationale from strict hermeneutics and criticism to cognitive science.

Terence Cave focuses on the latter when he says that literature ”allows us

to think things that are difficult to think otherwise. We now examine such a

possibility from two perspectives: in terms of the role of imagination, and

in terms of the role of the senses.

Cave posits that literature is an object of knowledge, a creator of knowl-

edge, and that it does so through the interplay between rational thought

and imaginative thought, between the ”counterfactual imagination” and

our daily lives and experiences. Through this tension, this suspension

of disbelief is nonetheless accompanied by an epistemic awareness, mak-

ing fiction reliant on non-fiction, and vice-versa. Working on literary al-

lusions, Ziva Ben-Porat shows that this simultaneous activation of two

texts is influenced by several factors. First, the form of the linguistic to-

ken itself has a large influence over the understanding of what it alludes

to. Its aesthetic manifestation, then, can be said to modulate the concep-

tual structures which will be acquired by the reader. Second, the context

in which the alluding token(s) appears also influences the correct inter-

pretation of such an allusion, and thus the overall understanding of the

text. This contextual approach, once again hints at the change of scale

thatRicoeur points inhis shift from theword to the sentence, anddemands

that we focus on thewhole, rather than single out isolated instances of lin-

guistic beauty. Finally, a third factor is the personal baggage (a personal

encyclopedia) brought by the reader. Such a baggage consists of varying

experience levels, of quality of the know-how that is to be activated dur-

251

ing the reading process, and of the cognitive schemas that readers carry

with them. Imagination in literary interpretation, builds on these vari-

ous aspect, from the very concrete form and choice of the words used, to

the unspoken knowledge structures held in the reader’s mind, themselves

depending on varied experience levels. By allowing the reader to project

themselves into potential scenarios, imagination allows us to test out pos-

sibilities and crystallize themost useful ones to continue building our con-

ception of the fictional world.

The work of imagination also relies on how the written word can elicit

the recall of sensations. This takes place through the re-creation, the

evokation of sensory phenomena in linguistic terms, such as the percep-

tual modeling of literary works, which can be defined as (linguistic) sim-

ulations relying on the senses to communicate situations, concepts, and

potential realities, something at work in the process of creating a fiction.

This connects back to the modelling complexities evoked in 3.2.2: both

source code and literature have at least the overlap of helping to formmen-

tal models in the reader.

This attention to the sense calls for an approach of literary criticism as

seen through embodied cognition, starting from the postulate that human

cognition is grounded in sensorimotricity, i.e., the ability to feel, perceive,

andmove. Specifically, pervading cognitive process called perceptual sim-

ulation, which is activated when we cognitively process a gesture in a real-

life situation, is also recruited when we read about actions, movements,

and gestures in texts.

Depiciting movement, vision, tactility and other embodied sensations

allows us to crystallize and verify the work of the imaginative pro-

cess. As such, literature unleashes our imaginary by recreating sensual

experiences—Lakoff even goes as far as saying that we can only imag-

ine abstract concepts if we can represent them in space15. It seems that

15Geoff Hinton, pioneer of modern deep-learning, has reportedly said that, to visualize

100-dimensional spaces, one should first visualize a 3-dimensional, and then ”shout 100 really

252

class love{};

void main(){
throw love();

}

Listing 48: Unhandled Love, by Daniel Bezera, published in {code poems}

(Bertram, 2012)

the imaginative process depends in part on visual and spatial projections,

and suggests a certain fitness of the conceptual structures depicted. By

describing situations which, while fictional, nonetheless are possible in a

reality often very similar to the one we live in, it is easy for the reader to

connect and understand the point being made by the author. So if litera-

ture is an object of knowledge, both sensual and conceptual, offering an

interplay between rational and imaginative thought, it still relies on the

depiction of mostly familiar situations (the protagonists physiologies, the

rules of gravity, the fundamental social norms are rarely challenged).

A first issue that we encounter here, in trying to connect source code

and computing to this line of thought, is that source code has close to no

perceptible sensual existence, beyond its textual form. In trying to com-

municate concepts, states and processes related to code and computing,

and in being unable to depict them by their own material and sensual

properties, we once again resort to linguistic processes which enable the

bringing-into-thinking of the program text.

The code poem listed in 48 suggests a similar phenomenon when it

comes to perceiving motions and sensations through words. The key part

of the poem here is the use of the keyword throw: as a reserved keyword

in some of the most popular programming languages, it is known and has

been encountered bymultiple programmers, as opposed to a word defined

in a specific program (such as a variable name). This previous encoun-

really loud, over and over again”, cited in (Akten, 2016)

253

ters build up a feeling of familiarity and of dread—indeed, the act of the

throwing in programming is as dynamic and as violent as in human prose.

To throw an object in programming, is to interrupt the smooth execution

flow of the program, because something unexpected has happened,—that

is, an exception. Additionally, the title of the poemhints at a supplemental

implication of the poems motion; any exception that is thrown should be

caught, or handled, by another part of the program, in order to gracefully

recover from the mishap and proceed as expected. If it’s not handled—as

is the case in the poem—the program terminates and the source code itself

aborts all function.

Vilem Flusser considers poetic thinking as a means to bring concepts

into the thinkable, and to crystallize thoughts which are not immediately

available to us16; through various linguistic techniques, poetry allows us

to formulate new concepts and ideas, and to shift perspectives. Rendered

meaningful via this code poem, a certain conception of love is therefore

depicted here as an exception that must be handled (with care) , and the

use of a particularly dynamic keyword elicits such a feeling in a readerwho

previously had to throw and handle exceptions.

Another example of how source code can communicate concepts can

be seen in 49. In this case, we can see in the relation between the name of

the function, find and the three local variables high, low and probe, that the

act of finding is going to imply some sort of search space. The search space

is going to be traversed in an alternating way, called the binary search in

computer science terms17.

16”In this sensewemay say that the intellect expands intuitively. Wemay, however, define the

intuition that results in the production of proper names better, since it is a productive intuition.

Wemay call it “poetic intuition.” The proper names are taken, through this ntuitive activity, from

the chaos of becoming in order to be put here (hergestellt), that is, in order to be brought into

the intellect.” (FLUSSER & Novaes, 2014)
17The author of 49 said of the difference between concept and implementation: ”Nothing

could be simpler, conceptually, than binary search. You divide your search space in two and see

whether you should be looking in the top or bottomhalf; then you repeat the exercise until done.
Instructively, there are a great many ways to code this algorithm incorrectly, and several widely

254

package binary;

public class Finder {
public static int find(String[] keys, String target) {

int high = keys.length;
int low = -1;
while (high - low > 1) {

int probe = (low + high) >>> 1;
if (keys[probe].compareTo(target) > 0)

high = probe;
else

low = probe;
}
if (low == -1 || keys[low].compareTo(target) != 0)

return -1;
else

return low;
}

}

Listing 49: Binary search, implemented byTimBray inBeautiful Codehigh-

lights variable names as an indicator of the spatial component of the func-

tion’s performance (Bray, 2007).

Here, we thus have two indicators, syntactical and structural. First, high

and low, imply the space in-between, a space to be explored via probe18.

Second, the use of only two statements inside the while loop represents

the simplicity of the search process itself, a search process which, as (high

- low > 1) tells us, implies a shrinking search space19.

published versions contain bugs.” (Bray, 2007)
18Conversely these variables could have been named start, end and current, with sim-

ilar purpose, but a different denotation
19Rather than expliciting checking if the target has been found inside the loop, the code’s

simplicity relies on the fact that another definition forfinding is that of reducing search space:

”Some look at my binary-search algorithm and ask why the loop always runs to the end without

checkingwhether it’s found the target. In fact, this is the correct behavior; themath is beyond the

scope of this chapter, but with a little work, you should be able to get an intuitive feeling for it—

and this is the kind of intuition I’ve observed in some of the great programmers I’ve workedwith.

[…] You could do the math to figure out when the probability of hitting the target approaches 50

percent, but qualitatively, ask yourself: does it make sense to add extra complexity to each step

of an O(log2 N) algorithm when the chances are it will save only a small number of steps at the

255

By paying attention to the spatial and embodied implicit meanings

held in the syntactic structures used in both literature and source code,

we can start to see how a certain sense of understanding being extracted

from reading either kind of texts depends on embodiment. In the case of

program texts, the point is to reduce computational space into humanly

embodied space; similarly, literature engages in communicating different

kinds of space.

4.2.3 Words in space

Beyond the use of metaphor, literature allows the reader to engage cog-

nitively with the world of the work, and the interrelated web of concepts

that can then be grasped once they are put into words. This process of

putting down intention, through language and into written words, is also

the process of transforming a time-based continuum (speech) into a space-

based discreete sequence; a process called grammatization, explored fur-

ther in (Bouchardon, 2014). This is valid both for humanprose andmachine

languages: the unfathomably fast execution of sequential instructions is

manifested as static space in source code.

Literary theory also engages with the concept of space. We have seen

in the subsection above that there is a particular attention being given to

movement in space, through embodied cognition; in that case, the use of

a specific syntax can elicit a kinetic reaction in the incarnated reader. We

now pay attention to how spatiality interplays with meaning in literature,

looking at the spatial form of the text in general, and to spatio(-temporal)

markers in the text in specific.

First, we leave behind some traditional concepts in literary theory. We

have seen that, due to source code’s non-linearity and collaborative aspect,

end? The take-away lesson is that binary search, done properly, is a two-step process. First,write

an efficient loop that positions your low and high bounds properly, then add a simple check to

see whether you hit or missed.” (Bray, 2007)

256

concepts such as narrative and authorship are somewhat complicated to

map across fields.

We have mentioned above that the fictionality of a text provides a kind

of text-based simulation for a combination of events, characters and situa-

tions. While soure code, by its actual execution, might tend to be classified

rather as non-fiction, we nonetheless show here that, by evoking intercon-

nected entities, it also participates to the construction of mental models.

Here, we pay particular attention to fictional space: theweb of relation-

ships, connotations and suggestions that hint at a broader world than the

one immediately at hand in a work of literature. This fictional space, or

storyworld is not to be equated to what we have denotated as the problem

domain. Rather, it is what exists through, yet beyond, the text itself; we

refer to it as the world of reference.

To focus on the specific tokens denoting space, we rely on the distinc-

tion operated by Marie-Laure Ryan on the topic (Ryan, 2009). The starting

point she offers is to consider how the spatial extension of the text, its exis-

tence in a certain number of dimensions20 impacts the readers’ perception

of the narrative.

At the simplest level, we see this illustrated in 50. In this listing, we can

see how the most direct spatial perceptions of the program text, its inden-

tation, actually represents semantic properties: the indent on class_space

is related to it existing at a different level (scope) than the variables

dimensions and alone, just like the indent before def __init__ differs from

the one before def new_space also signify changes in lexical scope.

Moving beyond this immediately visual spatial component, Ryan shifts

to the spatial form of the text. Rather than looking at the space in which it

is deployed, it is considering

a type of narrative organization characteristic ofmodernism that
20An oral narrative exists in zero dimensions, a live TV news ticker exists in one dimen-

sion, a printed or digital page exists in two dimensions, while a theater play exists in three

dimensions.

257

class Space:
class_space = ”ever present”

def __init__(self, dimensions):
self.dimensions = dimensions
alone = True

def new_space():
new = new Space(4)

Listing 50: This snippet shows how the spatial extension of the text corre-

sponds to the structural semantics of the code, in the Pythonprogramming

language.

deemphasizes temporality and causality through compositional

devices such as fragmentation, montage of disparate elements,

and juxtaposition of parallel plot lines. (Ryan, 2009).

Narrative, in its traditional sense of coherent, sequential events whose

developments involve plot and characters, is seldommentioned in writing

source code. In source code, narrative is already deemphasized and the

spatial formof the textmentioned above is therefore better suited tomatch

the material of the code. Indeed, Ryan continues:

The notion of spatial form can be extended to any kind of de-

sign formed by networks of semantic, phonetic or more broadly

thematic relations between non-adjacent textual units. When

the notion of space refers to a formal pattern, it is taken in a

metaphorical sense, since it is not a system of dimensions that

determines physical position, but a network of analogical or op-

positional relations perceived by the mind. (Ryan, 2009)

Space, along with interactivity, is a core feature of the digital medium21.

JanetMurray also puts spatiality as one of the core distinguishing features

21As N. Katherine Hayles states in her eponymous essay, ”print is flat, code is deep” (Hayles,

2004)

258

of digital media, at the forefront of which are digital games22.

An example of this intertwining of flat textual screen and spatial depth

is the overall genre of interactive fiction, which displays prompts for tex-

tual interaction on a screen, accompanied with the description of where

the reader is currently standing in the fictional world. Exploration can

only be done in a linear fashion, entering one space at a time; and yet the

system reveals itself to contain spaces in multiple dimensions, connected

by complex pathways and relationships. The listing in 51 shows how the

execution processes of a program text can be expressed spatially in the

comments, and then textually in the rest of the file. Since comments are

ignored by the computer, this depiction is only to help the human reader

in their spatial representation of the executed program.

As Murray mentions, these features are not limited to those playful in-

teractive systems presented as works to be explored (be it e-literature or

digital games), but are rather a core component of digitality. Beyond the

realm of fiction, one can see instances of this in the syntax used in both

programming languages andprogramming environments (see 3.3.2 andour

overview of IDEs). For instance, the use of the GOTO statement in BASIC, of

the JMP and MOV instructions in x86 Assembly, or the use of the return in the

C family of programming languages all hint at movement, at going places

and coming back, representing the non-linear perception of program exe-

cution23.

And yet, Ryan hints at anothe aspect of spatial form specifically in the

22”The computer’s spatial quality is createdby the interactive process of navigation. Weknow

that we are in a particular location because when we enter a keyboard or mouse command the

(text or graphic) screen display changes appropriately. (Murray, 1998)
23In themeantime, program execution is still considered to be linear by themachine, since

instructions are executed one after the other. The use of multi-core architecture and par-

allel processing does complicate this picture, but programmers rarely engage directly with

the specification of which CPU core executes which instruction. What they do engage with,

is parallel programming, in which things happen simultaneously, thus presenting cognitive

complexity insofar as twoprocesses being run in parallel imply some sort of distinct semantic

spaces to be reflected in the mental model of the programmer.

259

* Part 1 -- Initial checks
*
* * . called by
* | MAC clients
* v . . No
* +--------+ +-----------+ . +-------------------+

+====================+↪→

* | mac_tx |->| device |-*-->| mac_protect_check |->v Is this
the simple v↪→

* +--------+ | quiesced? | +-------------------+ v case? See
[1] v↪→

* +-----------+ |
+====================+↪→

* * . Yes * failed |
* v | frames |
* +--------------+ |

+-------+---------+↪→

* | freemsgchain |<---------+ Yes . *
No . *↪→

* +--------------+ v
v↪→

* +-----------+
+--------+↪→

* | goto |
| goto |↪→

* | Part 2 |
| SRS TX |↪→

* | Entry [A] |
| func |↪→

* +-----------+
+--------+↪→

* |
|↪→

* |
v↪→

* |
+--------+↪→

*
+---------->| return |↪→

*
| cookie |↪→

*
+--------+↪→

Listing 51: This listing includes an execution flow diagram inside the pro-

gram text itself, testifying to the inherently fragmented and non-linear ex-

ecution of source code. (Mustacchi, 2019)

260

digital medium:

But an even more medium-specific type of spatial form resides in

the architecture of the underlying code that controls the naviga-

tion of the user through a digital text. (Ryan, 2021)

As writers and readers of this architecture, of which source code is the

blueprint, we gather information through syntax about developments in

space and time into a cognitive map or mental model of narrative space24.

Mental maps are therefore dynamically constructed in the course of

reading and consultedby the reader to orient herself in theprogram. Avery

simple example of spatialization of meaning, both visually and conceptu-

ally, can be seen in 52. There, the spatial component is rendered specifically

through the syntax of HTML. HTML, as a markup language, has a specific

ontology: it is fundamentally made up of elements who contain other ele-

ments, or are self-contained. When an element is contained into another, a

specific semantic relationship occurs, where the container influences the

contained, and vice-versa. Therefore, what we see at first is layout spatial-

ization, which leads to this specific triangle shape. By using the semantics

of the language, in which certain elements can only exist in the context of

others, this layout spatialization25 also comes to delimit certain semantic

areas. This explicitly poetic example takes religion, and the representation

ofGod as its problemdomain; its expressive force comes by describing it as

both the all-including and the all-included, and thus escaping the implicit

rules of everyday spatiality, that a thing cannot contain itself.

A more concrete example can be seen in 53. Written in the style of soft-

24The term narrative is used here to describe the effective behaviour of the program, once

executed. Since source code appreciation is subject to its function, following the narrative

of source code would then amount to following its correct execution path(s), even though

description fits better tomost program texts since, from themachine perspective, it describes

exactly what it is doing.
25While not functionally necessary, the indents added to the listing further highlight the

computational concept of nestedness through visual cues.

261

<GOD>
<universe>

<galaxy>
<solarsystem>

<earth>
<island>

<town>
<garden>

<flowerbed>
<snowdrop>

<petal>
<molecule>

<proton>
<quark>

<GOD>
</quark>

</proton>
</molecule>

</petal>
</snowdrop>

</flowerbed>
</garden>

</town>
</island>

</earth>
</solarsystem>

</galaxy>
</universe>

</GOD>

Listing 52: Nested, by Dan Brown and published in {code poems} (Bertram,

2012)

262

func (h *http2Listener) Shutdown(ctx context.Context) error {
pollIntervalBase := time.Millisecond
nextPollInterval := func() time.Duration {

// Add 10% jitter.
//nolint:gosec
interval := pollIntervalBase + time.Duration(weakrand ⌋

.Intn(int(pollIntervalBase/10)))↪→

// Double and clamp for next time.
pollIntervalBase *= 2
if pollIntervalBase > shutdownPollIntervalMax {

pollIntervalBase = shutdownPollIntervalMax
}
return interval

}

timer := time.NewTimer(nextPollInterval())
defer timer.Stop()
for {

if atomic.LoadUint64(&h.cnt) == 0 {
return nil

}
select {
case <-ctx.Done():

return ctx.Err()
case <-timer.C:

timer.Reset(nextPollInterval())
}

}
}

Listing 53: This listing represents the various steps taken in order to shut-

down a HTTP server, and shows multiple aspects of spatio-temporal com-

plexities (WeidiDeng, 2023)

ware engineers, rather than poets, this listing describes a function which

gracefully shuts down a HTTP server. Essentitlly, the function Shutdown()

regularly checks if the number of connections to the server is zero. If it

reaches zero, it considers the process completed without errors; it waits

until it receives an error from the context, or if it receives a tick from a

timer setup in advance.

The first reference we can look at is mostly spatial, and takes place at

the declaration of nextPollInterval. By being another function declaration,

it is both self-contained, but also has access to variables in its declarative

environment, such as pollIntervalBase. A long, dynamic series of state-

263

ments which double a timer interval everytime it is called is thus com-

pressed into a single token, nextPollInterval, and can then be passed as

an argument to timer functions. Here, the space of the timer interval’s cal-

culation is compressed and abstracted away.

Interestingly, we can note the comment // Add 10% jitter, which ex-

plains the calculation of the subsequent interval. The word jitter usually

refers to a quicky, jumpy movement, but is here used to facilitate the un-

derstanding of adding a random number to the previous one, effectively

deviating the timer from its linear increase. Here, using the word jitter im-

mediately evokes feeling of small, unpredictable change.

The second reference is primarily temporal. The keyword defer in the

line defer timer.Stop() specifically marks the deferred execution of this

particular function to the specific moment at which the current function

(Shutdown()) returns. This reference is not absolute (as is the timer on the

line above, even though it might not be determinate), but rather relative,

itself dependent on when the current function will return. Here, the pro-

gramming language itselfmakes it simple to express this relative temporal

operation.

Finally, we can take a look at both the last select statement of the func-

tion to see amore complex interplay of both space and time. There are two

things happening there. With the specific <- arrow, the pictorial represen-

tation shows how a message is incoming, either from ctx.Done(), which

itself comes from outside the current function, given as an argument, or

from timer.C, which comes from the timer that has just been declared in

the current function. Both of these messages come from different places,

one very distant, and the other very local, and might arrive at different

moments. Here, the <- denotes themovement of an incomingmessage, ex-

pliciting where the messages come from, and in which order they should

be treated, and thus facilitates the handling of event with varying spatio-

temporal properties.

The listing 53 shows not only different spaces of executions, nor only

264

different moments of execution, but very much the intertwining of space

and time. One of the earlier approaches to the specific tokenswhich repre-

sent space in the traditional novel has also related it to time: the chrono-

tope is described by Mikhail Bakhtin as the tight entanglement of tem-

poral and spatial relationships that are artistically expressed in literature.

Those markers execute a double function, as they allow for the reification

of temporal events and spatial settings during the unfolding of narrative

events26.

While Bakhtin introduces the concept from a marxist-historical point

of view, analyzing notions of history, ideal, epics and folklore through that

lense, it is nonetheless useful for our purposes. Chronotopes are a kind of

marker which enable the understanding of where something comes from

(such as an explicit module declarations in header files, or inline before a

function call), or when something should happen (such as the async/await

keyword pair in ECMAscript denoting the synchronicity of an operation or

the defer keyword indicating that a specificied function will only be called

when the current function returns).

Thus, the chronotopes give flesh to the events described in (and then

executed from) source code. As such, they function as the primary means

ofmaterializing time in space. Fromanetworkof these chronotopes, along

withmetaphors and other devices that are explicited in 5.2, emerges a con-

cretization of representation which the reader can use to constitue a men-

tal model of the program text.

Syntactical literary devices allow readers to engage cognitively with a

particular content; they enable the construction of mental models a par-

ticular narrative, through a network of metaphors, allusions, ambiguous

26”Time, as it were, thickens, takes on flesh, becomes artistically visible; likewise, space be-

comes charged and responsive to the movements of time, plot and history.” (Bakhtin, 1981)

265

interpretations and markers of space and time. We have shown that these

literary devices also apply to source code, especially how the use of ma-

chine tokens and human interpretation suggest an aesthetic experience

through metaphors, and with particular markers that are needed to make

sense of the time and space of a computer program, which differs radically

from that of a printed text. This making sense of a foreign time and space

is indeed essential in creating a mental map of the storyworld (in fiction)

or the world of reference (in non-fiction).

The use of the termmapalso implies a specific kindof territory, enabled

by the digital. As a hybrid between the print’s flatness and code’s depth,

Ryan and Murray—among many others—identify the digital narrative as

a highly spatialized one. This feature, Ryan argues, is but a reflection of the

inner architecture of source code. Pushing this line of thought further, we

now turn to architecture as a discipline to investigate how the built envi-

ronment elicits understanding, and how such possibilities might translate

in the space of program texts.

4.3 Architecture and understanding

At itsmost commondenominator, architecture is concernedwith the gross

structure of a system. At its best, architecture can support the understand-

ingof a systembyaddressing the sameproblemas cognitivemappingdoes:

simplifying our ability to grasp large system. This phrase appears in Kevin

Lynch’swork on The Image of theCity, inwhich he highlighted that our un-

derstanding of an urban environment relies on combinations of patterns

(node, edge, area, limit, landmark) to which personal, imagined identities

are ascribed. Theprocess is once again that of abstraction, but goes beyond

that, and includes a subjective perspective (Lynch, 1959). Moving from the

urban planner’s perspective to the architects, we see how each individual

component contributes to the overall legibility of the system. This section

266

considers how individual structures, through their assessed beauty, offer

a cognitive involvement to their participants.

Beauty in architecture is one of the discipline’s fundamental compo-

nents, dating back to Vitruvius’s maxim that a building should exhibit fir-

mitas, utilitas, venustas—solidity, usefulness, beauty. And yet in practice,

beauty, or the abillity to elicit an aesthetic experience, is not sufficient, and

sometimes not even required, for a building to be considered architectural.

Even though architecture is usually considered as an art, it is also a product

of engineering, and thus a hybrid field, one where function and publicness

modulate what could be otherwise a ”pure” aesthetic judgment.

This sections looks at architecture through its multiple aspects, to

highlight to which extent some of these are reflected in source code27.

Through an investigation of the tensions and overlaps of form, function,

context and materiality in the built space, we identify similarities in the

programmed space. Particularly, we will look at how an understanding of

patterns translates across both domains, in response to both architecture

and programming’s material constraints, due to the physical instantiation

of buildings and programs in a situated context.

4.3.1 Form and Function

Particularly, our interest here is with the cognitive involvement in the ar-

chitectural work. What is there to be understood in a building, and how do

buildings make it intelligible? The early theoretical answers to this ques-

tion is to be found in the work of Italian architects, such as Andrea Palla-

dio, whose conception of its discipline came from ideal platonic form, and

mathematical relation between facade and inner elements, as well as Leon

Battista Alberti, whose consideration of beauty in architecture, as such an

organization of parts that nothing can be changed without detriment to

27Recall how, in 2.3.3, programmers tended to refer extensively to themselves as architects,

engineers or craftspeople.

267

the whole (Scruton, 2013)28.

While structure is meant to stand the test of time and natural forces29,

utility can be assessed by the extent towhich a building fulfills its intended

function. How the beauty of a building relates to its function, whether

it can be completely dissociated from it, or if it is dependent on the ful-

fillment of its function, is still a matter of debate between formalists and

functionalists. Nonetheless, the position we take here is in line with Par-

sons and Carlson, in that fitness of an object is a core component of how

it is appreciated aesthetically (Parsons et al., 2012), and that form is hardly

separable from function.

In some way, then, form should be able to communicate the function

of a building. Roger Scruton, in his philosophical investigation of architec-

ture, brings up the question of language—if buildings are to be cognitively

engaged with, then one should be able to grasp what they communicate,

what they stand for, what they express. To do so, he starts from the fact

that architectural works are often composed of interconnected, coherent

sub-parts, which then contribute to the whole, in a form of gestaltung.

Architecture seems, in fact, to display a kind of ’syntax’: the parts

of a building seem to be fitted together in such a way that the

meaningfulness of the whole will reflect and depend upon the

manner of combination of its parts. (Scruton, 2013)

Yet, he develops an argumentation which suggests that architecture is

not so much articulated as a language, than as a set of conventions and

rules, and that it is not a representative medium (which would imply valid

and invalid syntax, as well as intent), but rather an expressive one. Ar-

chitectural significance, then, relies on the presence and arrangement of
28Such a definition is a reminiscent of how Vladimir Nabokov defines beauty in literature:

”A really good sentence in prose should be like a good line in poetry, something you cannot

change, and just as rhythmic and sonorous” (Nabokov, 1980)
29A purpose exemplified by the still standing structures of Roman and Greek antiquities,

resulting from a particular mixing process of concrete.

268

those evolving conventions—that is, a style—rather than on the depiction

of a subject through an exact syntax. While architecture might not repre-

sent content the sameway literature does, it is nonetheless expressive, and

relies on particular styles—recurring formal patterns and ways of doing—

to express a tone, a feeling, or a stimmung in their dwellers.

As identified in 2.3.3, the similarities between software and architecture

can be mapped as symmetrical approaches: as top-down or bottom-up,

from an architect’s perspective, or from a craftperson’s. Since we focus on

what a building expresses, we need to consider the source of such an ex-

pression. First, we look at howmodernism, and the conventions thatmake

up this architectural thought, are the top-down result of the intersection of

function, form and industry, and reveal the influence of functional design

on the aesthetic appreciation of a work.

The central modern architectural standard is Louis Sullivan’s maxim

that form follows function, devised as he was constructing the early of-

fice buildings in North America. Sullivan’s statement is thus that what the

building enables its inhabitants to do, inevitably translates into concrete,

visible, and sensual consequences.

All things in nature have a shape, that is to say, a form, an out-

ward semblance, that tells us what they are, that distinguishes

them from ourselves and from each other …It is the pervading

law of all things organic and inorganic, of all things physical and

metaphysical, of all things human and all things superhuman, of

all true manifestations of the head, of the heart, of the soul, that

the life is recognizable in its expression, that form ever follows

function. This is the law. (Sullivan, 1896)

The value of the building is therefore derived from what it allows the

individuals to do: the office building allows them to work, the school to

learn, the church to pray and the house to live. To do so, modernist ar-

chitecture rejects any superfluous decoration, or extraneous addition, as

269

a corruption of the purity of the building’s function. In a similar vein, Le

Corbusier, another fundamental actor of modern architecture, equates the

building with its function, advocating for the suppression of decorative

clutter and unnecessary furnishings and possessions, and hailing trans-

parency and simplicity as architectural virtues (Le Corbusier & Saugnier,

1923), and culminating in Le Corbusier’s assessment that the architectural

plan as a generator, and the house as a machine to be lived in.

From this perspective, architectural works are a kind of system, in that

they constitute sets of interrelated structural components, where the parts

are connected by distinctive structural and behavioral relations; and yet

the set of conventions to which Le Corbusier contributes is an abstract

representation of this systemic nature. He focuses on the plan as the pri-

mary source of architectural quality. For software developers, the equiv-

alent of an architectural plan would be a modelling system such as UML:

a language to describe structural relationships between software compo-

nents, with an example shown in 4.1. Fromamodernist angle, the aesthetic

value of a building is thus directly dependent on how well it performs an

abstractly defined function for its users, assessed at a structural level.

Just as a two-dimensional floorplan and a three-dimensional building

are different, a diagram and a program text are also different. This differ-

ence is highlighted throught the process of construction in architecture,

and implementation in software development, involving respectively en-

gineers and programmers to realize the work that has been designed by

the architect.

It is clear the modernists thought of function as engineering function,

and aligned it with engineering aesthetics30. Nonetheless, such a concep-

tion of function is definitelymachinic, consisting of airflow, heat exchange

or drainage, expressing a particular feeling of progress and achievement

through industrial manufacturing techniques allowing for new material

30Esthétique de l’ingénieur is the title of one of the chapters of Le Corbusier’s manifesto,

Vers une Architecture (Le Corbusier & Saugnier, 1923)

270

Figure 4.1: Description of a software component and its inner relations in

the Universal Modelling Language, (Wikipedia, 2023b)

capabilities against contextual understandings. Here again, the human is

but a small part in a dynamic system.

Jacques Rancière, in his study of the Werkbund and the Bauhaus-

inspired architecture, offers an alternative approach, away from the strcit

functionality laid out by Sullivan and Le Corbusier before him. The sim-

plification of forms and processes, he writes of the AEG Turbinenhalle in

Berlin, which is normally associated with the reign of the machine, finds

itself, on the contrary, related to art, the only thing able to spiritualize in-

dustrial work and common life (Ranciere, 2013).

By paying attention to the role of a detail, and of the human subjectiv-

ity and situatedness of the people inhabiting the building, departs form the

strict function of an object or of a building, to its actual use. Such a shift

moves the aesthetic judgment from a structure-centric perspective (such

as Le Corbusier’s ideal dimensions), to a human-centric perspective (such

as Lacaton & Vassal’s practical extension of space and light). Peter Down-

ton reiterates this point, whenhe states that ”buildings anddesign are often

judged from artistic perspectives that bear no relation to how the building’s

271

occupants perceive or occupy the building.” (Downton, 1998); his conception

of the artistic here, is one that aligns with Kant’s definition of a work that

is purposive in itself, and not based on a function that it should fulfill.

One can see a translation of such a self-referential conception of art in

the class of building which encompass follies and pavillions. These kinds

of buildings are constructed first and foremost for their decorative proper-

ties, and only secondarily for its structural and functional properties. Fol-

lies, for instance, are individual buildings built on the demand of one spe-

cific individual’s desire. They aim to represent something else than what

they are, with no other purpose than ornament and the display of wealth.

Pavilions, in the modern acceptation of the term, are rather displays of

architectural and engineer prowess, demonstrating the use of new tech-

niques and materials. By focusing only on design and technical feat, it is

this prowess itself that is being represented: the function of the building

is only to represent the skill of its builders. For instance, Junya Ishigami’s

pavillion at the Venice Biennale in 2008, shown in 4.2 consisted in a very el-

egant and aerial structure, but whose function was depending on the fact

that no living being interacted with it31.

As an artform, architecture provides an immersive and systemic phys-

ical environment, and thus shapes human psychology and agency within

it, in turn forcing the dweller to acknowledge and engage with their en-

vironment. This suggests that, from a formal, top-down approach which

considers architecture as possessing a systematic language to be realized

exactly at a structural level, there exists a complementary, bottom-up ap-

proach, centered around human construction and function.

31Indeed, the structure collapsed due to a cat’s playfulness: ”The Barbican says that the 37-

year-old Ishigami is ”internationally acclaimed”, and there is certainly a buzz and fascination

around him. Last year he won the Golden Lion, the highest prize at the Venice Architecture

Biennale, for a structure that collapsed almost as soon as it was built, following an accident

with a cat. Little was left but a scrawled note saying ”Scusate, si è rotto. I’m sorry It’s broken.”

(Moore, 2011)”

272

Figure 4.2: Pavillion built by Junya Ishigami + associates, showing a focus

on appearance and structural feat, rather than habitability. Picture cour-

tesy of Iwan Baan, 2008.

4.3.2 Patterns and structures

A counterpoint to this modernist approach of master planning is that

of Christopher Alexander. Along with other city planners in the United

States, such as William H. Whythe or Jane Jacobs, Alexander belongs to an

empirical tradition of determining what makes a built environment good

or not, by examining its uses and the feelings it elicits in the people who

tread its grounds. He elaborates an approach to architecture which does

not exclusively rely on abstract design and technological efficiency, but

rather takes into account the multiple layers and factors that go into mak-

ing

[...] beautiful places, places where you feel yourself, places where

you feel alive (Alexander, 1979) [...]

In The Timeless Way of Building, he focuses on how beauty is involved

in moving from disorganized to organized complexity, a design process

which is not, in itself, the essence of beauty, but rather the condition

273

for such beauty to arise. Alexander’s conception of beauty, while very

present throughout his work, is however not immediately concerned with

the specifics of aesthetics, but rather with the existence of such objects.

This existence, in turn, does require to be experienced sensually, including

visually.

In this process of achieving organized complexity, he highlights the

paradoxical interplay between symmetry and asymmetry, and pinpoints

beauty as the ”deep interlock and ambiguity” of the two, a beauty he also

finds the the relationship between static structures of the built environ-

ment, and the flow of living individuals in their midst. In his perspective,

then, architecture should take into account the role of tension between op-

posite elements, rather than the combination of rational and abstract de-

sign elements. Such an approach echoes other considerations of tension

as a source for stimulating human engagement,such as Ricoeur’s analysis

of the metaphor (see 4.2.1), and the resolution of the riddles presented in

works of obfuscated source code (see 2.1.2).

He therefore considers a possible aesthetic experience as a conse-

quence of qualities such as appropriateness, rightness to fit, not-simplistic

and wholeness. All of these have in common the subsequent need for a

purpose, a purpose which he calls the Quality Without a Name (Alexander,

1979). This quality, he says, is semantically elusive, but nonetheless ex-

ists; it is, ultimately, the quality which sustains life, a conclusion which he

reached after extensive empirical research: no one can name it precisely,

but everyone knowswhat it refers to. It is the quality whichmakes one feel

at home, which makes one feel like things make sense in a deep, unexpli-

cable way32. This reluctance to being linguistically explicited is echoed in

32”It is always looking at two entities of some kind and comparing them as to which one has

more life. It appears to be a rank bit of subjectivity. […] It turns out that these kind of measure-

ments do correlate with real structural features in the thing and with the presence of life in the

thing measured by other methods, so that it isn’t just some sort of subjected I groove to this,

and I don’t groove to that and so on. But it is a way of measuring a real deep condition in the

particular things that are being compared or looked at.” (Alexander, 1996)

274

the work of the craftsman, where a practitioner often finds herself show-

ing rather than telling (Pye, 2008), another domain with which software

developers identify, explicited in 2.3.3.

Among the adjectives used to circle around this quality are whole, com-

fortable, free, exact, egoless, eternal (Alexander, 1979). Some of these quali-

ties canalsobe found in softwaredevelopment, particularlywholeness and

comfort. A whole program is a programwhich is not missing any features,

whose encounter (or lack thereof) might cause a crash. If if a function im-

plies a systematic design, such systematic design is not compromised by

the lacking of some parts. Conversely, it is also a program which does not

have extraneous—useless—features.

A comfortable program text being is a program which might be mod-

ified without fear of some unintended side-effects, without inivisible de-

pendencieswhichmight then compromise thewhole. There is enough sep-

aration of concerns to ensure a somewhat safe working area, in which one

can engage in epistemic probing assuming that things will not be breaking

in unexpected ways; being whole, it also provides a higher sense of mean-

ing by realizing how one’s work relates to the rest of the construction. The

implication here is that comfort derives from a certain kind of knowledge,

a knowledge of how things (spatial arrangements, technical specifications,

human functions) are arranged, how they relate to each other, how they

can be used and modified.

To complement this theoretical pendant, Alexander conducted empir-

ical research to find examples of such qualities, in a study led at the Uni-

versity of Berkley which resulted in his most popular book, A Pattern Lan-

guage (Alexander et al., 1977). In it, he and his team lists 253 patterns which

are presented as to form a kind of language, akin to a Chomskian genera-

tive grammar, re-usable and extendable in a very concrete way, but with-

out a normative, quasi-biological component. It turns it out that such a

documentation, of re-usable configuration and solutions for contextual

problem-solving, had a significant echo with computer scientists.

275

A whole field of research developed around the idea expressed in A

Pattern Language, at the crossover between computer science and archi-

tecture33 of distinct, self-contained but nevertheless composable compo-

nents. In Alexandrian terms, they are a triad, which expresses a relation

between a certain context, a problem, and a solution. Similarly to archi-

tectural patterns, these emerged in a bottom-up fashion: individual soft-

ware developers found that particular ways of writing and organizing code

were in fact extensible and reusable solutions to common problemswhich

could be formalized enough to be shared with others. Patterns enable a

cognitive engagement based on a feeling of familiarity, and of recognizing

affordances.

Extending from the similarities of structure and function between soft-

ware and architecture mentioned above, it is the lack of learning from

practical successes and failures in the field which prompted interest in

Alexander’s work, along with the development of Object-Oriented Pro-

gramming, first through the Smalltalk language34, then with C++, until to-

day, as most of the programming languages in 2023 include some sort of

object-orientation and encapsulation. What object-orientation does, is

that it provides a semantic structure to the program, reflected in the syn-

tactic structure: objects are conceptual entities, with states and actions, as

discussed in 3.2.2 and shown in 45. This enables such objects to be re-used

within a program text, and even across program texts.

The similarities between a pattern and an object, insofar as they are

self-contained solutions to contextual situations that emerged through

practice, and resulting fromempirical deductions, caught onwith software

developers as a technical solution with a social inflection, rather than a

computational focus. Writing in Patterns of Software, with a foreword by

33See, for instance, the Beautiful Software Initiative as an organized effort to develop

Alexander’s theses on growth, order, artefact and computation (Bryant, 2022).
34For an extensive history of the design and development of the Smalltalk hardware and

software, see Alan Kay’s Early History of Smalltalk (Kay, 1993).

276

Alexander, Richard P. Gabriel addresses this shift from the machine to the

human:

The promise of object-oriented programming—and of program-

ming languages themselves—has yet to be fulfilled. That promise

is tomake plain to computers and to other programmers the com-

munication of the computational intentions of a programmer or a

team of programmers, throughout the long and change-plagued

life of the program. The failure of programming languages to do

this is the result of a variety of failures of someof us as researchers

and the rest of us as practitioners to take seriously the needs of

people in programming rather than the needs of the computer

and the compiler writer. (Gabriel, 1998)

The real issue raised here in programming seems to be, again, not to

speak to the machine, but to speak to other humans. The programming

paradigm of object-orientation aims at solving such complexity in com-

munication. While understanding software is hard, creating, identifying,

and formalizing patterns into re-usable solutions turns out to be at least

as hard (Taylor, 2001). Part of this comes from a lack of visibility of code

bases (most of them being closed source), but also from the series of vari-

ous economic and time-sensitive constraints to which developers are sub-

ject to (and echoes those in the field of architecture), and which result in

moving frommaking something great to making something good enough

to ship. The promise of software patterns seemed to offer a way out

by—laboriously—codifying know-how. Interestingly, while the increase

in software quality has been found to result from the application of en-

gineering practices (Hoare, 1996), the discovery and formalization of the

software patterns takes place through the format of writers’ workshops35,

35As taken from thewebsite of the 2022 Pattern Languages of Programming conference: ”At

PLoP, we focus on improving the written expression of patterns throughwriters’ workshops. You

will have opportunities to refine and extend your patterns with the assistance of knowledgeable

277

presenting a different mode of knowledge transmission.

Throughout his work, Gabriel draws from the work of an architect to

weave parallels between his experience as a software developer and as a

poetry writer, drawing concepts from the latter field into the former, and

inspecting it through the lens of a pattern languages of built concrete or

abstract structures. We develop further two concepts in particular, and

show how habitability and compression enable an understanding of such

structures.

Compression and habitability in functional structures

We have seen how source code is an inherently spatial medium, with en-

trypoints, extracted packages, parallel threads of executions, relative fold-

ers and directories and endless jump between files. Reading a program

text therefore matches more closely an excursion into a foreign territory

whose map might be misleading, than reading a book from start to finish.

For instance, 4.3 builds on a longer history of using the city as a metaphor

for large code bases, and visualizes classes, packages and version in three

dimensions.

Given this somewhat literal mapping of source code structure onto ur-

ban structure, and given the abstract structure of object-oriented code, a

reader of source code will need to find their bearings and orient them-

selves36. Once the entrypoint is found, the programmer starts to explore

the programmed maze and attempts to make sense of their surroundings,

as a step towards the construction of mental models.

Both inhabitants in a building and programmers in a code base have a

tendency to be there to accomplish something, whether it might be living,

and sympathetic patterns enthusiasts and to work with others to develop pattern languages.”

(Guerra & Manns, 2022).
36”Exploring a source code repository always startswithfinding outwhat theOSwill select as

the entry point. 99% of the time it means finding the ‘int main(int,char**)‘ function” says Fabien

Sanglard on the topic of reverse-engineering code-bases (Sanglard, 2018).

278

Figure 4.3: CodeCity is an integrated environment for software analysis, in

which software systems are visualized as interactive, navigable 3D cities.

The classes are represented as buildings in the city, while the packages are

depicted as the districts in which the buildings reside. (Wettel, 2008)

working or eating for the former, or fixing, learning or modifying for the

latter.s Particularly in software, one of the correlated functions of a pro-

gram text is to bemaintainable; that is, it must bemade under the assump-

tion that others will want to modify and extend source code. Other pieces

of code might just be satisfying in being read or deciphered (as we’ve seen

in source code poetry in 2.3.1 or with hackers in 2.1.2) but this assumption

of interaction with the code brings in another concept, that of habitability.

In Gabriel’s terms, it is

the characteristic of source code that enables programmers,

coders, bug-fixers, and people coming to the code later in its life

to understand its construction and intentions and to change it

comfortably and confidently. (Gabriel, 1998)

In a sense, then, beautiful code is also code that is clear enough to in-

form action and, well-organized enough to warrant actually taking that

action. For instance, writing in the ACM Queue, an anonymous program-

mer discusses the beauty in a code where the separation between which

279

sections of the source are hardware-dependent and which are not, as seen

in 54. In that example, it is clear to the programmer what the problem-

domain is: counter incrementation, high-performance computation, or a

specific Intel chip.

There are several things which we can identify here. First, the three

lines at the top of the listing indicate version numbers, which do not

hold any computational functionality, but rather a human functionality: it

communicates that this software considers change and evolution as core

part of its source code, inviting the programmer reader to further modify

it37

Second, the line defining the types of CPUs supported by the software is

written in human-intelligible way, rather than a cryptic hexadecimal nota-

tion38. While theCPUs are ultimately represented inhexadecimal notation,

the effort is made to render things intelligible to and quickly retrievable

from the programmer’s memory.

Finally, the struct pmc_mdep is a shorthand notation for ”machine-

dependent”. In an era in which software can theoretically be executed on

different hardware architectures, it is welcome to make the difference be-

tween the variables themselves, which apply across platform, and the val-

ues of these variables, which need to be changed per platform39. This is

37From the anonymous programmer: ”The engineer clearly knew his software would be

modified not only by himself but also by others, and he has specifically allowed for that by hav-

ing major, minor, and patch version numbers. Simple? Yes. Found often? No.” (Vicious, 2008).
38”Nothing ismore frustratingwhenworking on a piece of software than having to remember

yet another stupid, usually hex, constant. I am not impressed by programmers who can remem-

ber they numbered things from 0x100 and that 0x105 happens to be significant. Who cares? I

don’t. What I want is code that uses descriptive names. Also note the constants in the code

aren’t very long, but are just long enough to make it easy to know in the code which chip we’re

talking about.” (Vicious, 2008).
39”It would seem obvious that you want to separate the bits of data that are specific to a

certain type of CPU or device from data that is independent, but what seems obvious is rarely

done in practice. The fact that the engineer thought about which bits should go where indicates

a high level of quality in the code.” (Vicious, 2008).

280

#define PMC_VERSION_MAJOR 0x03
#define PMC_VERSION_MINOR 0x00
#define PMC_VERSION_PATCH 0x0000

/* * Kinds of CPUs known */

#define __PMC_CPUS() \ __PMC_CPU(AMD_K7, ”AMD K7”) \
__PMC_CPU(AMD_K8, ”AMD K8”) \ __PMC_CPU(INTEL_P5, ”Intel
Pentium”) \ __PMC_CPU(INTEL_P6, ”Intel Pentium Pro”) \
__PMC_CPU(INTEL_CL, ”Intel Celeron”) \ __PMC_CPU(INTEL_PII,
”Intel Pentium II”) \ __PMC_CPU(INTEL_PIII, ”Intel Pentium III”)
\ __PMC_CPU(INTEL_PM, ”Intel Pentium M”) \ __PMC_CPU(INTEL_PIV,
”Intel Pentium IV”)

↪→

↪→

↪→

↪→

↪→

↪→

// ...

/*
* struct pmc_mdep
*
* Machine dependent bits needed per CPU type.
*/

struct pmc_mdep
{

uint32_t pmd_cputtype; /* from enum pmc_cputype */
uint32_t pmd_npmc; /* max PMXs per CPU */
uint32_t pmd_npmc; /* PMC classes supported */
struct pmc_classinfo pmd_classes[PMC_CLASS_MAX];
int pmd_nclasspmcs[PMC_CLASS_MAX];

/*
* Methods
*/

int (*pmd_init)(int _cpu); /* machine dependent initalization*/
int (*pmd_cleanup)(int _cpu) /* machine dependent cleanup */

}

Listing 54: This header file defines the structure of a program, both in its

human use, in its interaction with hardware components, and its decou-

pling of hardware and software elements.

281

a good example of a separation of concerns: it is made clear which parts

of the program text the programmer needs to pay attention to, and can

change, and which parts of the program texts she needs not be concerned

with. For a further example of separation of concerns, one could point

a beautiful commit is a commit which adds a significant feature, and yet

only change the lines of the code that are within well-defined boundaries

(e.g. a single function), leaving the rest of the codebase untouched, and yet

affecting it in a fundamental way.

Habitability, then, is a combination of acknowledgment by thewriter(s)

to the reader(s) of the source, by referring to the evolution over time of the

software, along with the use of intelligible names and separation of con-

cerns. This distinction relates to Alexander’s property of comfort, by af-

fording involvement instead of estrangement. Still, such a feature of hab-

itability, of supporting life, doesn’t specify at all what it could, or should,

look like. Rather, we get from Alexander a negative definition:

The details of a building cannot be made alive when they are

made frommodular parts…And for the same reason, the details of

a building cannot be made alive when they are drawn at a draw-

ing board. (Alexander, 1979)

If modularity itself is at odds with making good (software) construc-

tions, then its implementation under the terms of an object-oriented pro-

gramming paradigm becomes complicated. Indeed, the technical formal-

ization of the field came with the release of the Design Patterns: Elements

of Reusable Object-Oriented Software book, which lists 23 design patterns

implementable in software (Gamma et al., 1994). Its influence, in terms of

copies sold, and in terms of papers, conferences and working groups cre-

ated in its wake, is undeniable, with Alexander himself giving a keynote

address at the ACM two years after the release. It has, however, been met

with some criticism.

Some of this criticism is that patterns are ”external”, they look like

282

they come from somewhere else, and are not adapted to the code. In this

sense, this corroborates Alexander in being wary of constructions which

do not integrate fully within their environments, which do not, in an or-

ganic sense, allow for a piecemeal growth40. If patterns express relations

between contexts, problems and solutions, then it seems that one of the

main complaints of developers is that theymight, one day, look at the code

they were working on and see chunks of foreign snippets dumped in the

middle to fix some generic problem, with no understanding for specifics,

nor fit in the existing structure. This is judged negatively due to its lack

of understanding of context offered by those proposed solutions. In this,

blindly applying patterns from a textbook might be a solution, but it’s not

an elegant one. This criticism also finds its echoes in the Scruton’s anal-

ysis of architectural styles; rules and conventions, while present in archi-

tecture, are often adopted only to be departed from—re-interpreted and

adapted to the context of the building (Scruton, 2013).

One aspect that has been eluded so far is therefore that of the program-

ming languages used by the programmer. Indeed, one doesn’t write Ruby

like onewrites Java, C++, or Lisp. Ifmateriality is a core component of elicit-

ing an aesthetic experience in an architectural context, then programming

languages are the material of source code, and offer a specific context to

the writing and reading of the program text.

A final criticism to software patterns is that they are language-

independent. As such, they are often workarounds for features that a par-

ticular programming language doesn’t allow from the get-go, or offers sim-

pler implementations than the pattern’s41.

While patterns might operate at a more structural level, hinting at dif-

ferent parts of code, and its overall organization, one can also turn to a
40Addressing this concern, the failure of strict top-down hierarchies in software develop-

ment resulted in the agilemethodology for business teams, nowone of themost popularways

of building software products.
41For instance, Peter Norvig highlights that most patterns in the original book have much

simpler implementations in Lisp than in C++ or Smalltalk (Norvig, 1998)

283

moremicro-level. What can a detail do in our understanding of structures?

Sometimes decried, sometimes praised in architecture, the detail fulfills

mutliple roles: acting as ameaningful interface, compressingmeaning and

testifying for materiality.

Both Scruton and Rancière mention the detail as an essential architec-

tural element. Without contributing to the structural soundness of the

construction, it nonetheless contributes to its expressiveness. A blend of

the cognitive and sensual is also characteristic of Scruton’s ”imaginative

perception”, understood as the perception of the details of built structures,

and their extrapolation into the imaginary. Indeed, the experience of the

user is based on the points at which it sensually grasps its environment:

the detail is therefore the point of interaction between the human and the

structure. This imagination depends on the interpretative choices in pars-

ing ambiguous or multiform aspects of the built environment. The detail

contributes to the stylistic convention of the creation:

Convention, by limiting choice, makes it possible to ’read’ the

meaning in the choices that are made …for style is used to ’root’

the meanings which are suggested to the aesthetic understand-

ing, to attach them to the appearance from which they are de-

rived. (Scruton, 2013)

With many external constraints, due to both context and function, the

architect or builder does not havemuch room for personal expression, and

it is through details that their intent and their style are being shown. The

significance of a detail can be in explaining which conventions the struc-

ture adopts, as well as communicating the intent of the creator. A signif-

icant detail manages to compress meaning into a restricted physical sur-

face.

Compression is a concept introduced by Gabriel in response to pattern

design. In narrative and poetic text, it is the process through which a word

is given additional meaning by the rest of the sentence. In a sentence such

284

as ”Last night I dreamt I went to Manderley again.” (Du Maurier, 1938), the

reader is unlikely to be familiarwith the exactmeaning ofManderley, since

this is the first sentence of the novel. However, we can infer some of the

properties of Manderley from the rest of the sentence: it is most likely a

place, and itmost likely had something to dowith the narrator’s past, since

it is being returned to. A similar phenomenon happens in source code, in

which the meaning of a particular expression or statement can be derived

from itself, or from a larger context. In object-oriented programming, the

process of inheritance across classes allows for the meaning of a particu-

lar subclass to be mostly defined in terms of the fields and methods of its

subclasses—its meaning is compressed by relying on a semantic environ-

ment, which might or not be immediately visible.

This, Gabriel says, induces a tension between extendability (to create a

new subclass, one must only extend the parent, and only add the differen-

tiating aspects) and context-awareness (one has to keep inmind the whole

chain of properties in order to knowexactlywhat the definition of an inter-

face that is being extended really is). Resolving sucha tension, by including

enough information to hint at the context, while not over-reaching into id-

iosyncracy, is a thin line of being self-explanatory without being verbose.

For instance, Casey Muratori explores the process of compression in

refactoring a program text, first by distinguishing semantic compression

from syntactic compression42, and then honing in on what makes a com-

pression successful43. Transitioning from uncompressed code, shown in

55 to compressed code, shown in56, allows the programmer to understand

42”Like, literally, pretend you were a really great version of PKZip, running continuously on

your code, looking for ways to make it (semantically) smaller. And just to be clear, I mean se-

mantically smaller, as in less duplicated or similar code, not physically smaller, as in less text,

although the two often go hand-in-hand.” (Muratori, 2014)
43”Ah! It’s like a breath of fresh air compared to the original, isn’t it? Look at how nice that

looks! It’s getting close to the minimum amount of information necessary to actually define the

unique UI of themovement panel, which is howwe knowwe’re doing a good job of compressing.

(Muratori, 2014)

285

int num_categories = 4;
int category_height = ypad + 1.2 * body_font->character_height;
float x0 = x;
float y0 = y;
float title_height = draw_title(x0, y0, title);
float height = title_height + num_categories * category_height + ypad;
my_height = height;
y0 -= title_height;

{
y0 -= category_height;
char *string = ”Auto Snap”;
bool pressed = draw_big_text_button(x0, y0, my_width,

category_height, string);↪→

if (pressed)
do_auto_snap(this);

}

{
y0 -= category_height;
char *string = ”Reset Orientation”;
bool pressed = draw_big_text_button(x0, y0, my_width,

category_height, string);↪→

if (pressed)
{

// ...
}

}
// ...

Listing 55: genalloc.c, Basic general purpose allocator formanaging special

purpose memory from the Linux Kernel, displaying examples of source-

code spatiality (Muratori, 2014)

broad patterns about the overall architecture of the program text—here,

the function is to display a clickable panel on a user interface.

The difference we can see between the compressed and uncompressed

goes beyond the number of lines used for the same functionality. A first

clue in terms of semantics is the use of strictly syntactic block markers: {

and }. There are here stricly to delimitate a code block, with no semantic

meaning to the computer. While the uncompressed listing shows all the

separate elements needed for a button to exist (such as x0, y0, my_height,

etc.), while the compressed listings as encapsulated them into an object

286

Panel_Layout layout(this, x, y, my_width);
layout.window_title(title);

layout.row();
if(layout.push_button(”Auto Snap”)) {

do_auto_snap(this);
}

layout.row();
if(layout.push_button(”Reset Orientation”))
{

// ...
}

// ...
layout.complete(this);

Listing 56: genalloc.c, Basic general purpose allocator formanaging special

purpose memory from the Linux Kernel, displaying examples of source-

code spatiality (Muratori, 2014)

called Panel_Layout, thus abstracting away from the programmer’s mind

the details of such a panel. This encapsulation then enables a further com-

pressionof the program: by adding the push_button()methodon the layout,

the compressed code realizes the same functionality of checking for but-

tonpresses for eachbutton, but ties it to a specificobject and, due to the im-

plementation, includes the name of the button being pressed on the same

line as the check happens, rather than a line apart in the uncompressed

example.

By compressing the source code and abstracting some concepts, such

as the button, one can also gain understanding about the rest of the pro-

gram text. By showing details of practices and styles, a programmer can

extrapolate from a small fragment to a larger structure. Gabriel calls this

idea locality: it is

that characteristic of source code that enables a programmer to

understand that source by looking at only a small portion of it.

(Gabriel, 1998)

287

In poetry, compression presents a different problem since, ultimately,

the definitions of each words are not limited to the poet’s own mind but

also exist in the broad conceptual structures which readers hold. How-

ever, since all aspects of a program is always explicitly defined, program-

mers thus have the ultimate say on the definition of most of the data and

functions described in code. As such, they create their own semantic con-

textswhile, at the same time, having to take into account the context of the

machine, the context of the problem, and the context(s) that their reader(s)

might be coming from.

We now see that, within the same need for the appreciation of func-

tion, architecture can take opposite approaches: seeing a building as an

abstract design, or as a concrete construction. In his 1951 lecture, ”Build-

ing, Dwelling, Thinking”, Martin Heidegger offers a perspective on these

two forms of architecture. He equates top-down and bottom-up to, respec-

tively, building as erecting, and building as cultivating. Ultimately, both of

these approaches relate to human dwelling in a given location. To dwell is

an engagement of thought and of action, one which leads to the construc-

tion of buildings in particular locations, arguing for a contextual adequacy

of human structures to their environment44 (Heidegger &Hofstadter, 1975).

This active existence in time and space, allowing for deliberate thought

and action and resulting in a better structure also equates to Gabriel’s con-

cept of habitability:

Habitability is the characteristic of source code that enables pro-

grammers coming to the code later in its life to understand its

construction and intentions and to change it comfortably and

confidently …Software needs to be habitable because it always

has to change …What is important is that it be easy for program-

mers to come up to speed with the code, to be able to navigate
44Speaking of a farmhouse in the Schwarzwald, he describes the chain of creation as such:

” A craft which, itself sprung from dwelling, still uses its tools and frames as things, built the

farmhouse.

288

through it effectively, to be able to understand what changes to

make, and to be able to make them safely and correctly. (Gabriel,

1998)

As Heidegger returns to the etymological root of dwelling (bauern) in

order to connect it to the possible experience of the world humans can

have through language, he grounds our experience in context. His though,

between earth, man, techne and construction, hints at the essence that

human construction—craft—as a consequence of thought and as a prece-

dence to construction. Taking into account context and materiality, a fi-

nal connection between software and architecture is actuallywith the field

that predated, and complemented, architecture: craftsmanship.

4.3.3 Material knowledge

Architecture as afield and the architect as a rolehavebeen solidifiedduring

theRenaissance, consecrating a separation of abstract design and concrete

work. This shift obfuscates the figure of the craftsman, who is relegated to

the role of executioner, until the arrival of civil engineering and blueprints

overwhelmingly formalized the discipline (Pevsner, 1942). While computer

science, through its abstract designs, echoes the modernist architect with

its pure plans, the programmer, identifying itselfwith the craftsman, offers

different avenues for knowing artefacts.

The architect emerged fromcenturies of hands-onwork, while the com-

puter scientist (formerly known as mathematician in the 1940s and 1950s)

was first to a whole field of practitioners as programmers, followed by

a need to regulate and structure those practices. Different sequences of

events, perhaps, but nonetheless mirroring each other. On one side, con-

structionworkwithout an explicit architect, under the supervision of bish-

ops and clerks, did indeed result in significant achievement, such as Notre

Dame de Paris or the Sienna Cathedral. On the other side, letting go of

structured and restricted modes of working characterizing computer pro-

289

gramming up to the 1980s resulted in a comparison described in the aptly-

named The Cathedral and the Bazaar. This essay described the Linux

project, the open-source philosophy it propelled into the limelight, and

how the quantity of self-motivated workers without rigid working struc-

tures (which is not to say without clear designs) can result in better work

than if made by a few, select, highly-skilled individuals (Raymond, 2001;

Henningsen & Larsen, 2020).

What we see, then, is a similar result: individuals can cooperate on a

long-term basis out of intrinsic motivation, and without clear, individual

ownership of the result; a parallel seen in the similar concepts of collective

craftsmanship in the Middle-Ages and the egoless programming of today

(Brooks Jr, 1975). Building complex structures throughhorizontal networks

and practical knowledge is therefore possible, with consequences in terms

aesthetic apprecitations.

Craftsmanship in our contemporary discourse seemsmost tied to a ret-

rospective approach: it is often qualified as that which was before manu-

facture, and the mechanical automation of production (Thompson, 1934),

preferring materials and context to technological automation. Following

Sennett’s work on craftsmanship as a cultural practice, we will use his def-

inition of craftsmanship as hand-held, tool-based, intrinsically-motivated

workwhich produces functional artefacts, and in the process of which is held

the possibility for unique mistakes (Sennett, 2009).

At the heart of knowledge transmission and acquisition of the crafts-

man stands the practice, and inherent in the practice is the good practice,

the one leading to a beautiful result. The existence of an aesthetic ex-

perience of code, and the adjectives used to qualify it (smelly, spaghetti,

muddy), pointed at in 2.2.2, already hints at an appreciation of code beyond

its formalisms and rationalisms, and towards its materiality.

A traditional perspective is that motor skills, with dexterity, care and

experience, are an essential feature of a craftsman’s ability to realize some-

thing beautiful (Osborne, 1977), alongwith self-assigned standards of qual-

290

ity (Pye, 2008; Sennett, 2009). These qualitative standards which, when

pushed to their extreme, result in a craftsperson’s style, gained through

practice and experience, rather than by explicit measurements (Pye, 2008)
45. Two things are concerned here, supporting the final result: tools and

materials (Pye, 2008). According to Pye, a craftsperson should have a deep,

implicit knowledge of both, what they use to manipulate (chisels, ham-

mers, ovens, etc.) as well as what they manipulate (stone, wood, steel, etc).

The knowledge that the craftsman derives, while being tacit (see 3.1.2),

is directed at its tools, its materials, and the function ascribed to the arte-

fact being constructed, and such knowledge is derived from a direct en-

gagement with the first two, and a constant relation to the third. Finally,

any aesthetic decoration is here to attest to the care and engagement of

the individual in what is being constructed—its dwelling, in Heideggerian

terms.

This relationship to tools and materials is expected to have a relation-

ship to the hand, and at first seems to exclude the keyboard-based practice

of programming. But even within a world in which automated machines

have replaced hand-held tools, Osborne writes:

Inmodernmachine production judgement, experience, ingenuity,

dexterity, artistry, skill are all concentrated in the programming

before actual production starts. (Osborne, 1977)

He opens here up a solution to the paradox of the hand-made and the

computer-automated, as programming emerges from the latter as a new

skill. This very rise of automation has been criticized for the rise of a Os-

borne’s ”soulless society” (Osborne, 1977), and has triggered debates about

authorship, creativity and humanity at the cross-roads between artificial

intelligence and artistic practice (Mazzone & Elgammal, 2019). One av-

45See Pye’s account of craftsmanship, and his intent to make explicit the question of qual-

ity craftsmanship and ”answer factually rather than with a series of emotive noises such as

protagonists of craftsmanship have too often made instead of answering it.” (Pye, 2008)

291

enue out of this debate is human-machine cooperation, first envisioned by

Licklider and proposed throughout the development of Human-Computer

Interaction (Licklider, 1960; Grudin, 2016). If machines, more and more

driven by computing systems, have replaced traditional craftsmanship’s

skills and dexterity, this replacement can nonetheless suggest program-

ming as a distinctly 21st-century craftsmanship, as well as other forms of

cratsmanship-based work in an information economy.

Beautiful code, code well-written, is an integral part of software crafts-

manship (Oram & Wilson, 2007). More than just function for itself, code

among programmers is held to certain standards which turn out to hold

another relationshipwith traditional craftsmanship—specifically, a differ-

ent take on form following function.

A craftsman’s material consciousness is recognized by the anthropo-

morphic qualities ascribed by the craftsman to the material (Sennett,

2009), the personalities and qualities that are being ascribed to it beyond

the immediate one it posseses. Clean code, elegant code, are indicators

not just of the awareness of code as a raw material that should be worked

on, but also of the necessities for code to exist in a social world, echoing

Scruton’s analysis that architectural aesthetics cannot be decoupled from

a social sense46. As software craftsmen assemble in loose hierarchies to

construct software, the aesthetic standard is the respect of others, as men-

tioned in computer science textbooks (Abelson et al., 1979).

Another unique feature of software craftsmanship is its blending be-

tween tools andmaterial: code, indeed, is both. This is, for instance, repre-

sented at its extreme by languages like LISP, in which functions and data

are treated in the same way (McCarthy et al., 1965). In that sense, source

code is a material which can be almost seamlessly converted from infor-

mation to information-processing, and vice-versa; code as amaterial is per-

haps the only non-finite material that craftspeople can work with—along

46”it is the aesthetic sense which can transform the architetct’s task from the blind pursuit of

an uncomprehended function into a true exercise of practical common sense.” (Scruton, 2013)

292

with words47.

Code, from the perspective of craft, is not just an overarching, theoret-

ical concept which can only be reckoned with in the abstract, but also the

verymaterial foundation fromwhich the reality of software craftsmanship

evolves. An analysis of computing phenomena, from software studies to

platform studies, should therefore take into account the close relationship

to their material that software developers can have. As Fred Brooks put it,

The programmer, like the poet, works only slightly removed from

pure thought-stuff. He builds his castles in the air, from air, cre-

ating by exertion of the imagination. Few media of creation are

so flexible, so easy to polish and rework, so readily capable of re-

alizing grand conceptual structures. (Brooks Jr, 1975)

So while there are arguments for developing amore rigorous, engineer-

ing conception of software development (Ensmenger, 2012), a crafts ethos

based on a materiality of code holds some implications both for program-

mers and for society at large: engagement with code-as-material opens up

possibilities for the acknowledgement of a different moral standard48. As

Pye puts it,

[…] the quality of the result is clear evidence of competence and

assurance, and it is an ingredient of civilization to be continually

faced with that evidence, even if it is taken for granted and unre-

marked. (Pye, 2008)

Codewell-done is a display of excellence, in a discipline in which excel-

lence has not been made explicit. If most commentators on the history of
47This disregards the impact of programming languages, the hardware they run on, and

the data they process on the environment; see (Kurp, 2008)
48Writing about resilient web development, Jeremy Keith echoes this need for material

honesty: ”The world of architecture has accrued its own set of design values over the years.

One of those values is the principle of material honesty. One material should not be used as a

substitute for another. Otherwise the end result is deceptive (Keith, 2016). ”

293

craftsmanship lament the disappearance of a better, long-gone way of do-

ing things, before computers came to automate everything, locating soft-

ware as a contemporary iteration of the age-old ethos of craftsmanship

nonetheless situates it in a longer tradition of intuitive, concrete creation.

To conclude this section, we have seen that architecture can offer us

some heuristics when looking for aesthetic features which code can ex-

hibit. Starting from the naïve understanding that form should follow func-

tion, we’ve examined how Alexander’s theory of patterns, and its signifi-

cant influence on the programming community49, points not just to an ex-

plicit conditioning of form to its function (inwhich casewewould all write

hand-made Assembly code), but rather to an elusive, yet present quality,

which is both problem- and context-dependent.

Along with the function of the program as an essential component of

aesthetic judgment, our inquiry has also shown that program texts can

present a quality that is aware of the context that the writer and reader

bring with them, and of the context that it provides them, making it hab-

itable. Software architecture and patterns are not, however, explicitly

praised for their beauty, perhaps because they disregard these contexts,

since they are higher-level abstractions; this implies that generic solutions

are rarely elegant solutions. And yet, there is an undeniable connection be-

tween the beautiful and the universal. Departing from our investigation of

software as craftsmanship, and moving through towards a more abstract

discipline, we turn to scientific aesthetics.

4.4 Forms of scientific activity

As programmers learned their craft from practice and immediate engage-

ment with their material, computer science was concomittantly develop-

49This theory has even spawned short-lived debates about his quality without a name on

stackoverflow (interstar, 2017).

294

ing from a seemingly more abstract discipline. Mathematicians such as

Alan Turing, John Von Neumann and Grace Hopper can be seen, not just

as the foreparents of the discipline of computing, but also as standing on

the shoulders of a long tradition of mathematicians. Computation is one

of the many branches of contemporary mathematics and, as it turns out,

this discipline also has reccuringly included references to aesthetics. After

the metaphors of literature and the patterned structures of architecture,

we conclude our analysis of the aesthetic relation of domains contingent

to source code by looking at how mathematics integrate formal presenta-

tion.

This section approaches the topic of aesthetics and mathematics in

three different steps. First, we look at the objective or status of beauty in

mathematics: are mathematical objects eliciting an aesthetic experience

in and of themselves, or do they rely on the observer’s perception? Con-

sidering the difference between abstract objects and their representation:

is aesthetic representation ascribed to either, or to both? And what is the

place of the observer in this judgment? Having established a particular

focus on the representations of abstract objects, we then turn to the epis-

temic value of aesthetics, and how positive aesthetic representations in

mathematics can enable insight and understanding. Finally, we comple-

ment this relation between knowledge and presentation and depart from

the ends of a proof, and an evaluative appraisal of aesthetics inmathemat-

ics, by investigating the actual process of doing mathematics, concluding

with topics of pedagogy and ethics.

4.4.1 Beauty inmathematics

The object of mathematics is to deal first and foremost with abstract enti-

ties, such as the circle, the number zero or the derivative, which can find

their applications in fields like engineering, physics or computer science.

Because of this historical separation from the practical world through

295

the use and development of symbols, one of the dominant discourses in

the field tended to consider mathematical beauty as something intrisic

to itself, and independent from time, culture, observer, or representa-

tion itself. Indeed, a circle remains a circle in any culture, and its aes-

thetic properties—uniformity, symmetry—do not, at first glance, seem to

be changing across time or space.

According to the Western tradition, mathematics are perhaps the first

art. Aristotle, in hisMetaphysics, wrote of beauty and mathematics as the

former being most purely represented by the latter, through properties

such as order, symmetry and definiteness50. By offering insight into the

harmonious arrangement of parts, it was thought thatmathematics could,

through beauty, provide knowledge of the nature of things, resulting in an

understanding of how things generally fit together. Beauty then naturally

emerges from mathematics, and mathematics can, in turn, provide an ex-

ample of beauty. At this intersection, it also becomes a source of intellec-

tual pleasure, since gainingmathematical knowledge exercises the human

being’s best power—that of the mind.

Arguing for this position of objective quality being revealed through

beautiful manifestation, Godfrey H. Hardy writes, in his Mathematician’s

Apology, that beauty is constitutive of the objects that compose the field;

their abstract quality is what removes them from the contextuality of hu-

man judgment.

A mathematician, like a painter or a poet, is a maker of pat-

terns. If his patterns aremore permanent than theirs, it is because

they are made with ideas. A painter makes patterns with shapes

and colours, a poet with words. …The mathematician’s patterns,

like the painter’s or the poet’s must be beautiful; the ideas like

50”the supreme forms of beauty are order, symmetry, and definiteness, which the mathemat-

ical sciences demonstrate in a special degree. And since these (e.g. order and definiteness) are

obviously causes of many things, evidently these sciences must treat this sort of causative prin-

ciples also (i.e. the beautiful) as in some sense a cause.” (Aristotle, 2006)

296

the colours or the words, must fit together in a harmonious way.

Beauty is the first test: there is no permanent place for uglymath-

ematics. (Hardy, 2012)

Here, Hartman posits that it is the arrangement of ideas that possess

aesthetic value, and not the arrangement of the representation of ideas.

In this, he follows the position of other influential mathematicians, such

as Poincaré (Poincaré, 1908), or Dirac (Kragh, 2002), who rely on beauty

as a property of the mathematical object in itself. For instance, Dirac

states that a physical law must necessarily stem from a beautiful math-

ematical theory, thus asserting that the epistemic content of the theory

and its aesthetic judgment thereof are inseparable; a good mathematical

theory is therefore intrinsically beautiful. Summing up these positions,

Carlo Cellucci establishes proportion, order, symmetry, definiteness, har-

mony, unexpectedness, inevitablity, economy, simplicity, specificity, and

integrations as the different properties inherent to mathematical objects,

as mentioned from an essentialist perspective (Cellucci, 2015). Ironically,

this rather seems to hint at the multiplicity of appreciations of beauty

within mathematics, with mathematicians concurring on the existence of

beauty, but not agreeing on what kind of beauty pertains to mathematics.

Nonetheless, they do agree that beauty is connected to understanding and

epistemic acquisition. John Von Neumann, writing in 1947, states that:

One expects a mathematical theorem or a mathematical theory

not only to describe and to classify in a simple and elegant way

numerous and a priori disparate special cases. One also expects

”’elegance” in its ”architectural,” structural makeup. Ease in stat-

ing the problem, great difficulty in getting hold of it and in all at-

tempts at approaching it, then again some very surprising twist

by which the approach, or some part of the approach, becomes

easy, etc…(Von Neumann, 1947)

Thepoint that VonNeumanmakes here is a difference between the con-

297

tent of the mathematical object and its structural form. Such a structural

form, by organizing the connection of separate parts into a meaningful

whole, makes it easy to grasp the problem. In this sense, it is both the crux

of aesthetics and the crux of understanding.

Similarly, François Le Lionnais, a founding member of the Oulipo lit-

erary movement in postwar France, wrote an essay on the aesthetic of

mathematics, paying attention to both the mathematical objects in and

of themselves, such as e or π, but also to mathematical methods, and how

they compare to traditional artistic domains such as classicism or roman-

ticism. Without getting into the intricacies of this argumentation, we can

nonetheless note that his descriptions ofmathematical beauty find echoes

in source code beauty. For instance, his appraisal of the proof by recur-

rence51 reflects similar lines of praise given by programmers to the ele-

gance of recursive functions, which are sharing the same mathematical

device (for instance, see 32 and 17 for examples of recursion as an aesthetic

property). A proof by recurrence is indeed a kind of structure, which can

be adapted to demonstrate different kinds of mathematical objects.

To understand is to grasp how each elements fits with others within a

greater structure (either in a poem, a symphony or a theorem), with some

or all of these elements being rendered sensible to the observer (Cellucci,

2015). The beauty of a mathematical object can then be ascribed in its dis-

play of the definite relation between its elements. For instance, the equa-

tion representing Euler’s identity (see 4.4) demonstrates the relation be-

tween geometry, algebra and numerical analysis through a restrained set

of syntactic symbols, where e is Euler’s number, the base of natural loga-

rithms, i is the imaginary unit, which by definition satisfies i2�=-1, and π is

51”It seems to us that amethod earns the epithet of classic when it permits the attainment of

powerful effects bymoderatemeans. A proof by recurrence is one suchmethod. Whatwonderful

power this procedure possesses! In one leap it can move to the end of a chain of conclusions

composedof an infinite number of links, with the sameeaseand the same infailliability aswould

enter into deriving the conclusion in a trite three-part syllogism.”” (Le Lionnais, 1971)

298

Figure 4.4: Euler’s identity demonstrates the relation between geometry,

algebra and numerical analysis through a restrained set of syntactic sym-

bols.

the ratio of the circumference of a circle to its diameter. Each of the sym-

bols is necessary, definite, and establishes clear relations between each

other, revealing a deep interlock of simplicity within complexity.

There is also empirical grounding for such a statement. This equa-

tion ranked first in a column in theMathematician Intelligencer about the

beauty of mathematical objects; the columnist, David Wells, had asked

readers to rank given theorems, on a linear scale from 0 to 10, according

to how beautiful they were considered (Wells, 1990)52. Again, while this as-

sessment does show that there can be consensus, and thus some aspect

of objectivity, in a mathematician’s judgment of beauty in a mathemati-

cal object, it also showed that mathematical beauty also depends on the

observer, since mathematicians provided varying accounts.

Rather than focusing on the beauty of the mathematical entities them-

52Alongwith, for instance, the infinite prime theorem, andFermat’s ”two squares” theorem.

299

selves, then, another perspective is to consider beauty to be found in the

representation of mathematical , since conceptual entities can only gras-

pable through their manifestation.

A first approach is to consider that that the beauty ascribed to mathe-

matics and the beauty ascribed to mathematical representation are unre-

lated. This disjunctive view, that aesthetics and mathematics can be de-

coupled (e.g. there can be ugly proofs of insightful theorems, and elegant

proofs of boring theorems), was first touched upon by Kant. As Starikova

highlights, the philosopher operates a distinction between perceptual, dis-

interested beauty, and intellectual, vested beauty. Perceptual beauty, the

one which can be found in the visual representations of mathematical en-

tities, is the only beauty graspable, while intellectual beauty, that of the ob-

jects themselves, simply does not exist, ”mathematics by itself being noth-

ing but rules” (Starikova, 2018).

Such manifestation of perceptual beauty, connected to mathematical

entities themselves, can nonetheless be found in the phenomenon of re-

proving in existing proofs, in order tomake themmore beautiful. Rota, for

instance, associates the beauty of a piece of mathematics with the short-

ness of its proof, as well as with the knowledge of the existence of other,

clumsier proofs53 (Rota, 1997). Thus, it is not so much the content of the

proof itself, nor the abstract mathematical object being proven that is the

focus of aesthetic attention, but rather the process of establishing the epis-

temic validity of such an object.

What is useful here is technique, the demonstration of the knowledge

from the prover to the observer, through the proof. As such, the asssess-

ment of aesthetics in mathematics, both as a producer and as an observer,

depends on the expertise of each individual, and on the previous knowl-

53””The beauty of a piece of mathematics is frequently associated with shortness of state-

ment or of proof.” and ”A proof is viewed as beautiful only after one is made aware of previous,

clumsier proofs.” (Rota, 1997)

300

edge that this indivual has of mathematics54 (an assessment of the aes-

thetics of mathematics for non-expert is discussed in 4.4.3 below). It seems

that the way that themathematical object is presented doesmatter for the

assessment.

If beauty is not intrinsic to the mathematical object, but rather con-

nected to the representation of the mathematician’s knowledge, there re-

mains the question of why is beauty taken into account in the doing of

mathematics. Looking at the lexical fields usedbymathematicians toqual-

ify their aesthetic experience, as reported in (Inglis & Aberdein, 2015) pro-

vides us with a clue: amongst the most used terms are ”ingenious”, ”strik-

ing”, ”inspired”, ”creative”, ”beautiful”, ”profound” and ”elegant”. Some of

these terms have a connection to the epistemic: for instance, something

ingenious enables previously unseen connections between concepts, im-

plying the resourcefulness and the cleverness of the originator of the idea.

The next question is therefore that of the relationship between the aes-

thetic and the epistemic inmathematics; and in how this relation canman-

ifest itself in source code.

4.4.2 Epistemic value of aesthetics

Caroline Jullien offers an alternative to the perception of mathematics as

an autotelic aesthetic object, by retracing thedefinitions of beauty givenby

Aristotle and establishing a cognitive connection through a cross-reading

of the Metaphysics and the Poetics, highlighting that ”the characteristics

of beauty are thus useful properties that yield an optimal perception of the

object they apply to. [...] Men can understandwhat is ordered, measured and

delineated far better than what is chaotic, without clear boundaries, etc.”

(Jullien, 2012). She then develops this point further, building on Poincaré’s

54”Mathematical creation is not so free, hence the contrasting analogy of the landscape gar-

dener, who needs a good grasp of the topography before getting down to creating something

beautiful which needs to be based on that topography.” (Thomas, 2017)

301

assessment of mathematical entities which fulfill aesthetic requirements

and are, at the same time, an assistance towards understanding the whole

of the mathematical object presented. Aesthetics, then, might not exist

exclusively as intrinsic properties of a mathematical object, but rather as

an epistemic device.

Her argument focuses on consideringmathematics as a language of art

in the Goodmanian sense of the term, investigating howmathematical no-

tation relates to Goodman’s criteria of syntactic density, semantic replete-

ness, semantic density, exemplification and multiple references (Jullien,

2012). She shows that, while mathematical notation might not seem to

satisfy all criteria (for instance, syntactic density is only fulfilled if one

takes into account graphical representations), a mathematical reasoning

can present symptoms of the aesthetic, particularly through the ability to

exemplify and refer to abstract entities.

However, to do that, she also includes different representations of

mathematical systems, beyond typographical characters. Taking into ac-

count diagrams and graphs, it becomes easier to see how amore tradition-

ally artistic representation of mathematics is possible. The thickness of

a line, the color-coding or the spatial relationship can all express a par-

ticular class of mathematical objects; for instance, the commutative prop-

erty in arithmetic can be represented in geometry through the aesthetic

property of symmetry. In this work, we focus on the textual representation

of source code, eluding any graph or diagram (such as the one we’ve seen

in architectural descriptions of software systems in 4.1). Nonetheless, we

have argued in 4.1 that source code qualifies as a language of art: while the

syntactic repleteness does not match that of, say, painting, the unlimited

typographical combinations, paired with the artificial design of program-

ming languages as working medium enables the kinds of subtle distinc-

tions necessary for symptoms of the aesthetic to be present.

Following Jullien, if a piece of mathematics is eliciting an aesthetic ex-

perience, or presenting positive aesthetic properties, it might then be a

302

support for the understanding by the viewer of this very piece of math-

ematics. Such a support is itself manifested in this ability to show a har-

monious correspondence of parts in relation to a whole. A beautiful pre-

sentation is a cognitively encouraging presentation. The subsequent ques-

tion then regards the nature of that understanding: if it does not happen

as an instant stroke of enlightenment, how does it take place as a gradual

process of deciphering (Rota, 1997)?

Addressing this question, Carlo Celluci hints at the concept of fitness,

meaning the appropriateness of a symbol in its denotation of a concept,

and the appropriateness of concepts in their demonstration of a theo-

rem. Only through this dual level can fitness enable understanding rather

than explanation (Cellucci, 2015). This gradual conception of understand-

ing fits the context of proofs and demonstration; when confronted with

source code—that is, with the result of a thought process of one or more

programmers—the processual conception of understanding seems to find

its limits.

To illustrate the relation between presentation and understanding of

defined conceptual entities, we can look at how the linked list, a data struc-

ture that is fundamental in computer science, can be represented in an

elegant way. The linked list allows for the retrieval and manipulation of

connected items, as well as for the re-arrangement of the list itself. To do

so, each item on the list contains both its value, and the address of the next

item on the list, except for the last item, which points to null; a graphical

representation is provided in 4.5.

The linked list implementation shown in 57 establishes a very concise

representation of a list, and holds within it thoughtful implications in

terms of organizing and accessing sequential data. However, it is limited in

communicating why this is a canonical example of such a computational

entity, or how did one reach this conclusion among other possible entites.

Looking at 57, one can view the different relationships between parts

andwholes: the list item composing the list itself, the head pointer being a

303

Figure 4.5: The linked list is an abstract data structure which acts as a fun-

damental conceptual entitiy in computer science. It is here represented as

a graph, and implementations can be seen in 57 and 59.

struct list_item {
int value;
struct list_item *next;

};
typedef struct list_item list_item;

struct list {
struct list_item *head;

};
typedef struct list list;

size_t size(list *l);
void insert_before(list *l, list_item *before, list_item *item);

Listing 57: A textbook example of a fundamental construct in computer

science, the linked list. This header file shows all the parts which compose

the concept (Kirchner, 2022a).

304

specific instance of the next pointer, and the differentmethods to access or

modify the list itself. Seeing all of these together suggest an understanding

of the whole through the parts which is nowhere explicitly described but

everywhere suggested.

Similarly, the example shown in 58 highlights some of the similarities

between source code aesthetics and the aesthetics of mathematics. Fea-

tured inBeautiful Code edited volume, this listing shows the essential com-

ponents of a regular expression matcher. Regular expressions are a form

of linguistic pattern that serve as an input to a regular expressionmatcher

in order to find particular patterns of text in an input string. In this case,

the essential components of the matcher are implemented, in a clear and

concise way. It highlights the process of looping over an input string, the

fundamentals of handling different patterns, and within those the funda-

mentals of handling different characters in relation to the current pattern.

Each part is clearly delineated (and thus fit for its separate purposes) and

contributes to an understanding of the whole, by limiting itself to display-

ing its essence.

Mathematics, like source code, therefore pay close attention to how for-

mal presentation facilitates the cognitive grasping of abstract concepts.

Reducing and organizing literal tokens into conceptually coherent units,

and meaningful relations to other units—for instance, having the code in

58 reversed, with the match() function at the bottomof the documentwould

represent a different level of importance of that entrypoint function, which

would complicate the understanding of how the source code functions.

Another overlap between aesthetics in source code and aesthetics in

mathematics is the attention that needs to be paid to skill and context. In

order to appreciate the regular expressionmatcher aesthetically, onemust

know that this is an essential representation of a matcher, and not a func-

tionally complete representation of matcher (58 misses some edge cases

to make it usuable). Someone operating in a functional context might

find this representation lacking and useless, while concise. Similarly, the

305

/* match: search for regexp anywhere in text */
int match(char *regexp, char *text)
{

if (regexp[0] == '^')
return matchhere(regexp + 1, text);

do
{ /* must look even if string is empty */

if (matchhere(regexp, text))
return 1;

} while (*text++ != '\0');
return 0;

}

/* matchhere: search for regexp at beginning of text */
int matchhere(char *regexp, char *text)
{

if (regexp[0] == '\0')
return 1;

if (regexp[1] == '*')
return matchstar(regexp[0], regexp + 2, text);

if (regexp[0] == '$' && regexp[1] == '\0')
return *text == '\0';

if (*text != '\0' && (regexp[0] == '.' || regexp[0] == *text))
returnmatchhere(regexp + 1, text + 1);

return 0;
}

/* matchstar: search for c*regexp at beginning of text */
int matchstar(int c, char *regexp, char *text)
{

do
{ /* a * matches zero or more instances */

if (matchhere(regexp, text))
return 1;

} while (*text != '\0' && (*text++ == c || c == '.'));
return 0;

}

Listing 58: A regular expression matcher by Rob Pike, praised for its ele-

gance and conciseness, but not for its utility (Oram &Wilson, 2007)

306

void remove_cs101(list *l, list_item *target)
{

list_item *cur = l->head, *prev = NULL;
while (cur != target)
{

prev = cur;
cur = cur->next;

}
if (prev)

prev->next = cur->next;
else

l->head = cur->next;
}

void remove_elegant(list *l, list_item *target)
{

list_item **p = &l->head;
while (*p != target)

p = &(*p)->next;
*p = target->next;

}

Listing 59: A comparison of how to remove an element from a list, with

elegance depending on the skill level of the author (Kirchner, 2022b).

linked list example (see 57)might be considered aesthetically pleasing only

at a particular level of skill. Indeed, aswe see in 59, the distinction is clearly

made between a beginner level (labelled ”CS101” for the course number of

introduction to computer science) and a non-beginner (meaning, elegant)

level.

At this point, we should note that some argue for aesthetics as a subset

cognitive properties. For instance, Starikova that ”[A]lthough visual rep-

resentations are involved and understanding does rely on them, it is clearly

non-perceptual beauty that initiates aesthetic judgment” (Starikova, 2018),

pointing back to the distinction above as to whether beauty is perceived

as intrinsic to the mathematical object, or intrinsic to its representation.

Here, we argue that both approaches in source code—intellectual engage-

ment eliciting aesthetic pleasure, and aesthetic pleasure eliciting intel-

lectual engagement—are not mutually exclusive. Specifically, these de-

pend on the nature of background knowledge that the reader holds when

307

engaging with a program text. On one side, the pre-existence of knowl-

edge allows one to focus on the quality and details of the presentation,

such as when mathematicians decide to find more beautiful proofs to an

existing theorem. In this case, the knowledge of the theorem, and how

its intellectually-perceived simplicity can be translated into a sensually-

perceived simplicity and an aesthetic judgment on the form. On the other

side, the lack of pre-existing knowledge involves the deciphering of sym-

bols and thus immediate attention to form. Here, the aesthetic judgment

precedes the intellectual judgment, all the while not guaranteeing a posi-

tive intellectual judgment (e.g. the abstract object, whether program func-

tion or mathematical theorem, is presented in an aestheticlly-pleasing

manner, but remains shallow, boring, non-sensical or wrong).

We consider here that both intellectual pleasure and aesthetic pleasure

happen in a dialogic fashion, considering the symbols and the meanings

reciprocally, until intellectual and aesthetic judgments have been given.

This is in line with Rota’s critique of the term ”enlightenment” or ”insight”

in his phenomenological account of beauty in mathematics. The process

of discovery and understanding is a much longer one than a simple stroke

of genius experienced by the receiver (Rota, 1997).

An aesthetic experience in mathematics involves uncovering the con-

nections betweenaesthetic and epistemic value being represented through

amathematical sumbol system. However, such a conception seems to take

place as a gradual process of discovery, both from the writer and from the

reader. Seen in the light of skill-based aesthetic judgment, this chrono-

logical unfolding points towards a final aspect of aesthetics in mathemat-

ics specifically, and in the sciences in general: aesthetics as heuristics for

knowledge acquisition.

308

4.4.3 Aesthetics as heuristics

So far, we had been looking at how aesthetics are evaluated in a finished

state—that is, once the form of the object (whether a proof or a program

text) has stabilized. In doing so, we have left aside a significant aspect of

the matter. Aesthetics in mathematics do not need to be seen exclusively

as an end, but also as a mean, as a part of the cognitive process engaged

to achieve a result. As such, we will see how they also serve as a useful

heuristic, both from a personal and social perspectives. Since the ultimate

purpose of mathematics specifically, and scientific activities in general, is

the establishment of truths, one can only follow that beauty has but a sec-

ondary role to play—though that is not to say superfluous.

Complementing the opinions of mathematicians at the turn of the

20tĥ century, Nathalie Sinclair offers a typology of the multiple roles that

beauty plays in mathematics. Beyond the one that we have investigated

in the previous sections, which she calls the evaluative role of beauty, in

determining the epistemic value of a conceptual object, she also proposes

to look at a generative role and at a motivational role (Sinclair, 2011). The

latter helps themathematician direct their attention toworthy problems—

something which is of limited equivalence in source code, since program-

ming mostly involves external functions. The former holds a guiding

role during the inquiry itself, once the domain of inquiry has been cho-

sen. It helps in generating new ideas and insights as one works through

a problem. This aesthetic sense can be productive both in its positive

evaluations—implying one might be treading a fruitful path—as well as

negative—hinting that something might not be conceptually well-formed

because it is not formally well-presented55. According to Root-Bernstein,

55”The realization that we recognize problems through our anti-aesthetic response to them

provides an important clue as to how we go about defining the nature of the problem and rec-

ognize its solution. The nature of the disjuncture between our aesthetic expectations and what

we observe or think we know reveals the detailed characteristics of the specific problem that

presents itself.” (Root-Bernstein, 2002)

309

the informal insights of aesthetic intuition precede formal logic. Only

when we explicitly recognize that the “tools of thinking” and the “tools of

communication” are distinct can we understand the intimate, yet tenuous,

connection between thought and language, imagination and logic (Root-

Bernstein, 2002).

This is echoed in Norbert Wiener’s perception of aesthetics in mathe-

matics as a way to structure a knowledge that is still in the process of be-

ing formed, in order to optimize short-term memory as the mental model

of the conceptual object being grasped is still being built56. This descrip-

tion of a sort of landmark item, in the geographical sense, echoes the role

of beacons described by Détienne (Detienne, 2001) and mentioned in 3.2.3,

One can therefore consider an aesthetically pleasing element to serve as a

sort of beacon used by programmers to construct a mental representation

of the program text they are reading or writing.

She positions her argument as a response to the strict focus of the stud-

ies inmathematics on the perceptions and reports of highly succesful indi-

viduals. If individuals like Poincaré, Hardy and Dirac can self-report their

experiences, she inquiries into the ability for individuals of a different skill

level to experience generative aesthetics. In a subsequent work, she de-

scribes the perception of mathematics students as such:

The aesthetic capacity of the student relates to her sensibility in

combining information and imagination when making purpose-

ful decisions, regarding meaning and pleasure. (Sinclair, 2011)

From her investigations, then, it seems that the heuristic value works

across skill levels, from Fields medal holder to high-school degree. Do-

ing similar work, Seymour Papert aimed at evaluating the functional role

56”The mathematician’s power to operate with temporary emotional symbols and to orga-

nize out of them a semipermanent, recallable language. If one is not able to do this, one is likely

to find that his ideas evaporate due to the sheer difficulty of preserving them in an as yet unfor-

mulated shape.” quoted by Sinclair in (Sinclair, 2004)

310

Figure 4.6: Steps of transformation to approach an epistemic value in find-

ing whether or not the square root of 2 is an rational number.

of aesthetics by documenting a group of non-experts working through a

proof that the square root of 2 is an irrational number. After a series of

transformative steps, the subjects of the study manged to eliminate the

square root symbol by elevating the two other variables to the power of

two, as in 4.6.

Papert conceptualizes such an observation as a phase of play, a phase

of playing which is aesthetic insofar as the person doing mathematics

is delimitating an area of exploration, qualitatively trying to fit things

together, and seeking patterns that connect or integrate (Papert, 1978),

and thus looking to identify parts which would seem to fit a yet-to-be-

determined whole. This also seems to confirm the perspective that there

are some structures that aremeaningul to themathematician—we present

the meaningful structures of source code in 5.2.

An interesting aspect of this conception of aesthetics is their temporal

component. While, for evaluative aesthetics, one can grasp the formal rep-

resentation of the mathematical object in one sweep, this generative role

hints at a more prominent temporal component. Both Sinclair and Papert

address this shift, and this opens up a new similarity with source code,

by shifting from the reader to the writer. One one side, Sinclair connects

this unfolding over time with Dewey’s theory of inquiry and with Polanyi’s

311

personal knowledge theory, connecting further the psychological percep-

tionwith the role of aesthetics. BothDewey and Polanyi offer a conception

of knowledge creation which relies particularly on a step-by step develop-

ment rather than immediate enlightenment (Polanyi & Grene, 1969; Sin-

clair, 2004); it is precisely this distinction which Papert addresses with his

comparison of aesthetics as gestalt (evaluative) or sequential (generative).

Taking from Dewey’s proposal of what an aesthetic experience is57, we

can connect it back to a sequential aesthetic perception in Papert’s term,

one of learning and discovery, but also to the practice of writing good

source code.

In programming practice, the process ofworking through the establish-

ment of a valuable epistemic object through the sequential change of rep-

resentations is called refactoring. As described byMartin Fowler, author of

an eponymous book, refactoring consists in improving the design (while

retaining an identical function) of an existing program text. The crux of

it is applying a series of small syntactical transformations, each of which

help to sharpen the fitness of the parts to which these transformations

are applied. Ultimately, the cumulative effect of each of these syntactical

transformations ends up being significant in terms of program compre-

hension, bringing it closer to a sense of elegance (Fowler et al., 1999). We

can see a version of this process with a starting point in 2, and a conclusion

in 3; all the intermediary steps are described in (Muratori, 2014).

Finally, extending from this personal and psychological perspective on

the development of epistemic value through the pursuit of aesthetic per-

ceptions, we can note a last dimension to aesthetics in mathematics: a so-

cial component. Shifting our attention away from themodes ofmathemat-

ical inquiry of individual mathematician, Sinclair and Primm have high-

57Dewey presents it as having first and foremost a temporal structure, something that is

dynamic, because it takes a certain time to complete, time to overcome obstacles and accu-

mulate sense perceptions and knowledge, following a certain direction, a teleology hopefully

concluding in a certain sense of pleasure and fulfillment. (Leddy & Puolakka, 2021)

312

lighted the practices of the community as a whole, including how truths

are named, manipulated and negotiated. (Sinclair, 2011).

On one side, this amounts to uncovering the fact that mathematical

problems are being decided upon and researched based on particular val-

ues and conventions, conventions which then trickle down into the pre-

sentation of results, highlighting trends and social formations both in

terms of content of research and style of research (Depaz, 2023). The inter-

pretation provided by Pimm and Sinclair is that aesthetics, through ”good

taste” subtly reify a power relationship and exclude practitioners by delim-

iting what is proper writing and proper research (Sinclair & Pimm, 2010).

While one could argue for a similar power dynamic when it comes to pro-

gramming style, one notable difference we see with programming is the

highly interactive collaborative environment inwhich the productivework

can be done. Particularly in the case of software engineering, the fact that

a given program text is being worked on by different individuals of differ-

ent skill levels and at different moments suggests a final use of aesthetics

as manifested in mathematics, as a social phenomenon. The evaluative

posture of the reader in giving a positive value judgment on a given frag-

ment of e.g. a program text or mathematical proof also implies that this

positive judgment was given as a generative role (Tomov, 2016). This im-

plies a certain sense of care that was being given to the program text, or to

the mathematical proof, which in turn suggests a certain functional qual-

ity in the finished object. Beautiful mathematics, as beautiful code, can

therefore be seen as a sign that someone cared for others to understand it

clearly.

Aesthetics, then, complements more traditional notions of scientific

thinking, from representing a mathematical object, enabling access to the

conceptual nature and implications of this object, as well as providing use-

ful heuristics in establishing a new object. What remains, and what will be

taken up in the next chapter, is to ”reify this meta-logic as a set of rules,

axioms, or practices.” (Root-Bernstein, 2002).

313

In this chapter, we have established a more thorough connection be-

tween aesthetics and cognition. First at the philosophical level, we estab-

lished how source code fits within Nelson Goodman’s conception of what

is a language of art, before complementing this ability for an aesthetic ex-

perience to communicate complex concepts with more contemporary re-

search.

We then moved to more specific domains, examining both how their

aesthetic properties engage with cognition, but also how these might re-

late to those held by source code. Looking at literature, we paid attention

to howmetaphors, embodied cognition and spatial representations are all

devices allowing for the evokation of complex world spaces and cultural

references, facilitating the comprehension of (electronic) poetry and prose.

Turning to architecture, we went beyond a naïve conception of modernist

aesthetics, one which focuses on the plan rather than on the building, to

the theories of Christopher Alexander. His concepts of patterns and habit-

ability have beenwidely transposed in programmingpractice, highlighting

a tension between top-down, abstract design, with bottom-up, hands-on

engagement. This notion of direct material engagement led us to further

examine how craft folds ties to architecture, and how it facilitates a partic-

ular kind of knowledge production—through direct material engagement.

Finally, turning to mathematics, we distinguished two main approaches:

an evaluative aesthetics, where the representation of a mathematical ob-

ject has an epistemic function, and a generative aesthetics, which works

as a heuristic from a writer’s perspective, and often remains unseen to the

reader, as it is presented in its final form, without the multiple steps of for-

mal transformations that led to the result.

Throughout, we compared how these specific aesthetic approaches re-

lated to source code. Since source code is presented by programmers as ex-

isting along these domains of practice, this has allowed us to further refine

314

a specific aesthetics of source code. The next chapter brings the concepts

identified in these domains into a dialogue in order to constitute a coher-

ent view. To do so, we start from source code’s material: programming

languages.

315

	Introduction
	Context
	The research territory: code
	Beautiful code
	Literature review

	The aesthetic specificities of source code
	What does source code have to say about itself?
	How does source code relate to other aesthetic fields?
	How do the aesthetics of source code relate to its functionality?

	Methodology
	Roadmap
	Implications and readership

	Aesthetic ideals in programming practices
	The practices of programmers
	Software developers
	Hackers
	Scientists
	Poets

	Ideals of beauty
	Introduction to the Methodology
	Lexical Field in Programmer Discourse

	Aesthetic domains
	Literary Beauty
	Scientific beauty
	Architectural beauty

	Understanding source code
	Formal and contextual understandings
	Between formal and informal
	Knowing-what and knowing-how

	Understanding computation
	Software ontology
	Software complexity
	The psychology of programming

	Means of understanding
	Metaphors in computation
	Tools as a cognitive extension

	Beauty and understanding
	Aesthetics and cognition
	Source code as a language of art
	Contemporary approaches to art and cognition

	Literature and understanding
	Literary metaphors
	Literature and cognitive structures
	Words in space

	Architecture and understanding
	Form and Function
	Patterns and structures
	Material knowledge

	Forms of scientific activity
	Beauty in mathematics
	Epistemic value of aesthetics
	Aesthetics as heuristics

	Machine languages
	Linguistic interfaces
	Programming languages
	Qualities of programming languages
	Styles and idioms in programming

	Spatial aesthetics in program texts
	Matters of scale
	Semantic layers
	Between humans and machines

	Contexts of functions
	Definitions of function
	Functions of source code
	Function in aesthetics

	Conclusion
	Findings
	What does source code have to say about itself?
	How does source code relate to other aesthetic fields?
	How do the aesthetics of source code relate to its functionality?

	Contribution
	Limitations

	Opening

